首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
During embryonic development of the peripheral nervous system (PNS), Schwann cell precursors migrate along neuronal axons to their final destinations, where they will myelinate the axons after birth. While the intercellular signals controlling Schwann cell precursor migration are well studied, the intracellular signals controlling Schwann cell precursor migration remain elusive. Here, using a rat primary cell culture system, we show that Dock8, an atypical Dock180-related guanine-nucleotide exchange factor (GEF) for small GTPases of the Rho family, specifically interacts with Nck1, an adaptor protein composed only of Src homology (SH) domains, to promote Schwann cell precursor migration induced by platelet-derived growth factor (PDGF). Knockdown of Dock8 or Nck1 with its respective siRNA markedly decreases PDGF-induced cell migration, as well as Rho GTPase activation, in precursors. Dock8, through its unique N-terminal proline-rich motif, interacts with the SH3 domain of Nck1, but not with other adaptor proteins composed only of SH domains, e.g. Grb2 and CrkII, and not with the adaptor protein Elmo1. Reintroduction of the proline-rich motif mutant of Dock8 in Dock8 siRNA-transfected Schwann cell precursors fails to restore their migratory abilities, whereas that of wild-type Dock8 does restore these abilities. These results suggest that Nck1 interaction with Dock8 mediates PDGF-induced Schwann cell precursor migration, demonstrating not only that Nck1 and Dock8 are previously unanticipated intracellular signaling molecules involved in the regulation of Schwann cell precursor migration but also that Dock8 is among the genetically-conservative common interaction subset of Dock family proteins consisting only of SH domain adaptor proteins.  相似文献   

2.
The development of the peripheral nervous system (PNS) is a highly dynamic process, during which motor and sensory axons innervate distal targets, such as skeletal muscles and skin. Axonal function depends critically on support from Schwann cells, the main glial cell type in the PNS. Schwann cells originate from the neural crest, migrate along outgrowing axons and associate with axons along their entire length prior to ensheathment or myelination. How axonal growth and the migration of Schwann cells is coordinated at the level of reciprocal axon-glial signaling is the fascinating subject of ongoing research. Neuregulin-1 (NRG1) type III, an axonal membrane-bound ligand for receptor tyrosine kinases of the ErbB family, acts as a “master regulator” of peripheral myelination. In addition, NRG1-ErbB signaling directs the development of the Schwann cell lineage and regulates the proliferation and survival of Schwann cells. Studies in zebrafish have identified a direct role of NRG1 type III in Schwann cell migration, but to what extend NRG1 serves a similar function in the mammalian PNS is not clear. We have employed a mouse superior cervical ganglion explant culture system, in which the migration of endogenous Schwann cells along outgrowing axons can be visualized by time-lapse imaging. Using this approach, we found that NRG1 type III-ErbB signaling regulates the colonization of distal axonal segments by Schwann cells. However, our data suggest an indirect effect of NRG1 type III-ErbB signaling via the support of Schwann cell survival in proximal axonal regions rather than a direct effect on Schwann cell motility.  相似文献   

3.
4.
During peripheral nerve development, each segment of a myelinated axon is matched with a single Schwann cell. Tight regulation of Schwann cell movement, proliferation and differentiation is essential to ensure that these glial cells properly associate with axons. ErbB receptors are required for Schwann cell migration, but the operative ligand and its mechanism of action have remained unknown. We demonstrate that zebrafish Neuregulin 1 (Nrg1) type III, which signals through ErbB receptors, controls Schwann cell migration in addition to its previously known roles in proliferation and myelination. Chimera analyses indicate that ErbB receptors are required in all migrating Schwann cells, and that Nrg1 type III is required in neurons for migration. Surprisingly, expression of the ligand in a few axons is sufficient to induce migration along a chimeric nerve constituted largely of nrg1 type III mutant axons. These studies also reveal a mechanism that allows Schwann cells to fasciculate axons regardless of nrg1 type III expression. Time-lapse imaging of transgenic embryos demonstrated that misexpression of human NRG1 type III results in ectopic Schwann cell migration, allowing them to aberrantly enter the central nervous system. These results demonstrate that Nrg1 type III is an essential signal that controls Schwann cell migration to ensure that these glia are present in the correct numbers and positions in developing nerves.  相似文献   

5.
Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.  相似文献   

6.
Rho GTPase activation, which is mediated by guanine nucleotide exchange factors (GEFs), is tightly regulated in time and space. Although Rho GTPases have a significant role in many biological events, they are best known for their ability to restructure the actin cytoskeleton profoundly through the activation of specific downstream effectors. Two distinct families of GEFs for Rho GTPases have been reported so far, based on the features of their catalytic domains: firstly, the classical GEFs, which contain a Dbl homology-pleckstrin homology domain module with GEF activity, and secondly, the Dock180-related GEFs, which contain a Dock homology region-2 domain that catalyzes guanine nucleotide exchange on Rho GTPases. Recent exciting data suggest key roles for the DHR-2 domain-containing GEFs in a wide variety of fundamentally important biological functions, including cell migration, phagocytosis of apoptotic cells, myoblast fusion and neuronal polarization.  相似文献   

7.
Analysis of Schwann cell (SC) development has been hampered by the lack of growing axons in many commonly used in vitro assays. As a consequence, the molecular signals and cellular dynamics of SC development along peripheral axons are still only poorly understood. Here we use a superior cervical ganglion (SCG) explant assay, in which axons elongate after treatment with nerve growth factor (NGF). Migration as well as proliferation and apoptosis of endogenous SCG-derived SCs along sympathetic axons were studied in these cultures using pharmacological interference and time-lapse imaging. Inhibition of ErbB receptor tyrosine kinases leads to reduced SC proliferation, increased apoptosis and thereby severely interfered with SC migration to distal axonal sections and colonization of axons. Furthermore we demonstrate that SC colonization of axons is also strongly impaired in a specific null mutant of an ErbB receptor ligand, Neuregulin 1 (NRG1) type III. Taken together, using a novel SC development assay, we demonstrate that NRG1 type III serves as a critical axonal signal for glial ErbB receptors that drives SC development along sympathetic axons.  相似文献   

8.
Understanding the control of myelin formation by oligodendrocytes is essential for treating demyelinating diseases. Neuregulin-1 (NRG1) type III, an EGF-like growth factor, is essential for myelination in the PNS. It is thus thought that NRG1/ErbB signaling also regulates CNS myelination, a view suggested by in vitro studies and the overexpression of dominant-negative ErbB receptors. To directly test this hypothesis, we generated a series of conditional null mutants that completely lack NRG1 beginning at different stages of neural development. Unexpectedly, these mice assemble normal amounts of myelin. In addition, double mutants lacking oligodendroglial ErbB3 and ErbB4 become myelinated in the absence of any stimulation by neuregulins. In contrast, a significant hypermyelination is achieved by transgenic overexpression of NRG1 type I or NRG1 type III. Thus, NRG1/ErbB signaling is markedly different between Schwann cells and oligodendrocytes that have evolved an NRG/ErbB-independent mechanism of myelination control.  相似文献   

9.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

10.
Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons.  相似文献   

11.
BACKGROUND: Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferation, survival, migration, or the onset of myelination. RESULTS: In genetic screens for mutants with disruptions in myelinated nerves, we identified mutations in erbb3 and erbb2, which together encode a heteromeric tyrosine kinase receptor for Neuregulin ligands. Phenotypic analysis shows that both genes are essential for development of Schwann cells. BrdU-incorporation studies and time-lapse analysis reveal that Schwann cell proliferation and migration, but not survival, are disrupted in erbb3 mutants. We show that Schwann cells can migrate in the absence of DNA replication. This uncoupling of proliferation and migration indicates that erbb gene function is required independently for these two processes. Pharmacological inhibition of ErbB signaling at different stages reveals a continuing requirement for ErbB function during migration and also provides evidence that ErbB signaling is required after migration for proliferation and the terminal differentiation of myelinating Schwann cells. CONCLUSIONS: These results provide in vivo evidence that Neuregulin-ErbB signaling is essential for directed Schwann cell migration and demonstrate that this pathway is also required for the onset of myelination in postmigratory Schwann cells.  相似文献   

12.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) was shown to play a role in Schwann cell myelination by recruiting Par3 to the axon-glial interface, but the underlying mechanism has remained unclear. Here we report that Par3 regulates Rac1 activation by BDNF but not by NRG1-Type III in Schwann cells, although both ligands activate Rac1 in vivo. During development, active Rac1 signaling is localized to the axon-glial interface in Schwann cells by a Par3-dependent polarization mechanism. Knockdown of p75 and Par3 individually inhibits Rac1 activation, whereas constitutive activation of Rac1 disturbs the polarized activation of Rac1 in vivo. Polarized Rac1 activation is necessary for myelination as Par3 knockdown attenuates myelination in mouse sciatic nerves as well as in zebrafish. Specifically, Par3 knockdown in zebrafish disrupts proper alignment between the axon and Schwann cells without perturbing Schwann cell migration, suggesting that localized Rac1 activation at the axon-glial interface helps identify the initial wrapping sites. We therefore conclude that polarization of Rac1 activation is critical for myelination.  相似文献   

14.
Cell migration is essential throughout embryonic and adult life. In numerous cell systems, the small GTPase Rac is required for lamellipodia formation at the leading edge and movement ability. However, the molecular mechanisms leading to Rac activation during migration are still unclear. Recently, a mammalian superfamily of proteins related to the prototype member Dock180 has been identified with homologues in Drosophila and Caenorhabditis elegans. Here, we addressed the role of Dock180 and ELMO1 proteins, which function as a complex to mediate Rac activation, in mammalian cell migration. Using mutants of Dock180 and ELMO1 in a Transwell assay as well as transgenic rescue of a C. elegans mutant lacking CED-5 (Dock180 homologue), we identified specific regions of Dock180 and ELMO1 required for migration in vitro and in a whole animal model. In both systems, the Dock180.ELMO1 complex formation and the ability to activate Rac were required. We also found that ELMO1 regulated multiple Dock180 superfamily members to promote migration. Interestingly, deletion mutants of ELMO1 missing their first 531 or first 330 amino acids that can still bind and cooperate with Dock180 in Rac activation failed to promote migration, which correlated with the inability to localize to lamellipodia. This finding suggests that Rac activation by the ELMO.Dock180 complex at discrete intracellular locations mediated by the N-terminal 330 amino acids of ELMO1 rather than generalized Rac activation plays a role in cell migration.  相似文献   

15.
Cell migration is essential for normal development and many pathological processes including tumor metastasis. Rho family GTPases play important roles in this event. In particular, Rac is required for lamellipodia formation at the leading edge during migration. Dock4 is a member of the Dock180 family proteins, and Dock4 mutations are present in a subset of human cancer cell lines. However, the function and the regulatory mechanism of Dock4 remain unclear. Here we show that Dock4 is regulated by the small GTPase RhoG and its effector ELMO and promotes cell migration by activating Rac1. Dock4 formed a complex with ELMO, and expression of active RhoG induced translocation of the Dock4-ELMO complex from the cytoplasm to the plasma membrane and enhanced the Dock4- and ELMO-dependent Rac1 activation and cell migration. On the other hand, RNA interference-mediated knockdown of Dock4 in NIH3T3 cells reduced cell migration. Taken together, these results suggest that Dock4 plays an important role in the regulation of cell migration through activation of Rac1, and that RhoG is a key upstream regulator for Dock4.  相似文献   

16.
The members of the Dock180 superfamily of proteins are novel guanine nucleotide exchange factors (GEF) for Rho family GTPases and are linked to multiple biological processes from worms to mammals. ELMO is a critical regulator of Dock180, and the Dock180-ELMO complex functions as a bipartite GEF for Rac. We identified a mechanism wherein the PH domain of ELMO, by binding the Dock180-Rac complex in trans, stabilizes Rac in the nucleotide-free transition state. Mutagenesis studies reveal that this ELMO PH domain-dependent regulation is essential for the Dock180-ELMO complex to function in phagocytosis and cell migration. Genetic rescue studies in Caenorhabditis elegans using ELMO and its homolog CED-12 support the above observations in vivo. These data reveal a new mode of action of PH domains and a novel, evolutionarily conserved mechanism by which a bipartite GEF can activate Rac.  相似文献   

17.
Myelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration. We now report that vimentin negatively regulates myelination, as loss of vimentin results in peripheral nerve hypermyelination, owing to increased myelin thickness in vivo, in transgenic mice and in vitro in a myelinating co-culture system. We also show that this is due to a neuron-autonomous increase in the levels of axonal neuregulin 1 (NRG1) type III. Accordingly, genetic reduction of NRG1 type III in vimentin-null mice rescues hypermyelination. Finally, we demonstrate that vimentin acts synergistically with TACE, a negative regulator of NRG1 type III activity, as shown by hypermyelination of double Vim/Tace heterozygous mice. Our results reveal a novel role for the intermediate filament vimentin in myelination, and indicate vimentin as a regulator of NRG1 type III function.  相似文献   

18.
《Cellular signalling》2014,26(5):1082-1088
Dock4 is a member of the Dock180 family of proteins that mediates cancer cell migration through activation of Rac. However, the regulatory mechanism of Dock4 remains unclear. In this study, we show that the C-terminal proline-rich region of Dock4 is essential for the Dock4 mediated promotion of cell migration in MDA-MB-231 breast cancer cells. We found that a phosphoinositide-binding protein SH3YL1 interacted with the C-terminal proline-rich region of Dock4. Interaction of SH3YL1 with Dock4 promoted Dock4-mediated Rac1 activation and cell migration. Mutations in the phosphoinositide-binding domain disrupted the ability of SH3YL1 to promote Dock4-mediated cell migration. In addition, depletion of SH3YL1 in MDA-MB-231 cells suppressed cell migration. Taken together, these results provide evidence for a novel and functionally important interaction between Dock4 and SH3YL1 to promote cancer cell migration by regulating Rac1 activity.  相似文献   

19.
Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of beta1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in beta1 integrin-null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in beta1 integrin-null nerves improves sorting. Thus, increased activation of Rac1 by beta1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.  相似文献   

20.
The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号