首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

2.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

3.
Abstract The degradation of [1-14C]- and [2-14C] propionate to acetate and bicarbonate by the sulfate- reducing bacterium Desulfobulbus propionicus was studied. When [1-14C]propionate was used, more than 95% of the label was recovered in the HCO3 fraction. [2-14C]Propionate was quantitatively converted into labeled acetate of which the methyl and carboxyl group were equally labeled. These results are in accordance with a randomizing route such as the methylmalonyl-CoA pathway for propionate degradation and support earlier evidence for the functioning of this pathway on the basis of enzyme assays.  相似文献   

4.
Abstract— Slices of electric organ of Torpedo marmorata were chopped and incubated in a saline-urea-sucrose medium. This preparation of minced tissue exhibited a relative enrichment in ACh and nerve endings, which was attributed to a loss of electroplaque cytoplasm. Electron microscopic controls showed nerve endings of normal morphology, some of them forming 'chaplets' separated from electro-plaques. Miniature endplate potentials were recorded on sealed fragments also present in this preparation. ACh levels remained unchanged during incubation periods as long as 19 h. The time course of the incorporation of [1-14C]acetate of [2-14C]pyruvate into ACh pools was studied. These incorporations were similarly affected by the choline added to the medium. In the presence of increasing choline concentrations (up to 10-4 m ), the incorporation of [14C]acetate or [14C]pyruvate into ACh increased. They both diminished when choline was added above 10-4M. The ACh content of the tissue was not affected by added choline. From the constancy of ACh levels in the presence of various choline concentrations and from the steady state of our preparation, we can conclude that the release of transmitter varied in parallel to the incorporation rate of the precursor of the acetyl moiety of ACh. This fact was also found using the efflux of [14C]acetate as an evaluation of ACh release. The values of release calculated by this method were in good agreement with those determined from the incorporations of acetate and pyruvate into ACh. It is suggested that the primary action of choline is on its high affinity carrier system. This triggers a secondary action on the ACh release mechanisms.  相似文献   

5.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

6.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

7.
Abstract: The effect of chronic low-level lead (Pb2+) ingestion on the metabolic pathways leading to the acetyl moiety of acetylcholine (ACh) was examined. Cerebral cortex slices, prepared from untreated or Pb2+-exposed rats (600 ppm lead acetate in the drinking water for 20 days), were incubated in Krebs-Ringer bicarbonate buffer with 10 m M glucose and tracer amounts of [6-3H]glucose and either [6-14C]glucose or [3-14C] β -hydroxybutyrate. Altering the concentration of Pb2+ in the drinking water produced a dose-related increase in blood and brain lead levels. When tissue from Pb2+-exposed rats was incubated with mixed-labeled glucose, incorporation into lacate, citrate, and ACh was considerably decreased, although no changes occurred in the 3H/14C ratios. Similar effects of Pb2+ were found when 14C-labeled β -hydroxy-butyrate was substituted for the [14C]glucose. It appears from these data that Pb2+ exerts a generalized effect on energy metabolism and not on a specific step in glucose metabolism. The impairment of glucose metabolism may explain partially the Pb2+-induced changes observed in cholinergic function.  相似文献   

8.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

9.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

10.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   

11.
Abstract: 13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

12.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

13.
Abstract: This study examines the consequences on cerebral polyamine biosynthesis of increases and decreases in cerebral methylation. Increases were elicited by administering the convulsant agent methionine sulfoximine (MSO) and decreases by elevating in vivo the cerebral levels of the methylation inhibitor S -adenosyl-homocysteine. Following the intraventricular (i.vt.) administration of one of the two possible polyamine precursors, [1,4-14C]putrescine, the specific radioactivity (sra) of the newly formed [14C]spermidine remained unchanged. Conversely, after i.vt. l -[3,4-14C]methionine, the other polyamine precursor, significantly higher sra values for [14C]spermidine and [14C]spermine were recorded in the brains of the MSO-treated animals. [14C] S - adenosylmethionine in the brain of the MSO-treated animals was also more highly labeled following [1-14C]-methionine, indicating its accelerated formation relative to controls. We also investigated the effect of the administration of adenosine + homocysteine, a treatment that results in elevated brain adenosylhomocysteine levels, on polyamine biosynthesis from [3,4-14C]-methionine. The results of these experiments show both significantly lower sra values for [14C]spermidine and [14C]spermine and significantly higher than control endogenous methionine levels, a clear sign of the existence of a retardation in the conversion of methionine to polyamines under these conditions. In conclusion, the present study demonstrates that while interference with cerebral methylation results in significant alterations of the rate of formation of the methionine moiety of spermidine and spermine, it has no effect on the entry of the putrescine moiety into the two polyamine molecules.  相似文献   

14.
The magnitude of metabolic activation is greatly underestimated in autoradiographic studies using [1- or 6-14C]glucose compared to parallel assays with [14C]deoxyglucose indicating that most of the label corresponding to the additional [14C]glucose consumed during activation compared to rest is quickly released from activated structures. Label could be lost by net release of [14C]lactate from brain or via lactate exchange between blood and brain. These possibilities were distinguished by comparison of glucose and lactate specific activities in arterial blood and brain before, during, and after generalized sensory stimulation and during spreading cortical depression. Over a wide range of brain lactate concentrations, lactate specific activity was close to the theoretical maximum, i.e. half that of [6-14C]glucose, indicating that exchange-mediated dilution of lactate is negligible and that efflux of [14C]lactate probably accounts for most of the label loss. Low lactate dilution also indicates that dilution of glutamate C4 fractional enrichment in [13C]glucose studies, currently ascribed predominantly to lactate exchange, arises from other unidentified pathways or factors. Alternative explanations for glutamate dilution (presented in Supporting Information) include poorly labeled amino acid pools and oxidative metabolism of minor substrates in astrocytes to first dilute the astrocytic glutamine pool, followed by dilution of glutamate via glutamate–glutamine cycling.  相似文献   

15.
The pattern of incorporation of label into the nucleotides of axillary bud ribonucleic acid was investigated in Pisum sativum L. cv. Meteor following the application of N 6[8-I4C]furfuryladenine or of [8-14C]adenine to the root system of decapitated plants and to cultured excised buds. When N 6[8-14C]furifaryladenine was applied to the root system label was confined to the guanine nucleotide moiety of the axillary bud ribonucleic acid; label from [8-14C]adenine was incorporated preferentially into adenine nucleotide in the molar ratio adenine nucleotide/guanine nucleotide = 3.23. When isolated buds were incubated in media containing [8-14C]adenine or N 6[8-14C]furfuryladenine, label was incorporated into both purine moieties of the ribonucleic acid. However, the relative incorporation into the guanine nucleotide fraction was considerably greater for N 6[8-I4C]furfuryladenine (adenine nucleotide/guanine nucleotide = 2.23) than for [8-14C]adenine (ratio = 4.67).
It was concluded that the pattern of metabolism of adenine to guanine and its incorporation into the guanine nucleotide moiety of pea axillary bud ribonucleic acid, is influenced by the presence of a substitution in the N 6 position of the adenine base.  相似文献   

16.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

17.
Abstract— The soluble proteins released from the synaptic vesicles of rat cerebral cortex were studied. One fraction (D4) of these proteins was released in parallel with release of acetylcholine when synaptic vesicles were incubated at 37°C for 10 min in isotonic medium. Another fraction (Dj) was liberated from synaptic vesicles when their membranes were ruptured by mild treatment under hyposmotic conditions and freeze-thawing after release of D1 fraction. Fractions D1 and D2 contained 12 and 9 per cent, respectively, of the total protein in the synaptic vesicles. Some properties of these fractions were investigated by zone electrophoresis and ultracentrifugation, and by measuring their binding capacities for [14C]acetylcholine and various enzyme activities related to acetylcholine metabolism.  相似文献   

18.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

19.
Abstract: The metabolic precursors and cerebral compartmentation of the augmented GABA pool induced by vigabatrin, an irreversible inhibitor of GABA transaminase, have been investigated by 13C NMR. Adult rats receiving rat chow ad libitum were given either drinking water only or drinking water containing 2.5 g/L vigabatrin for 7 days. Both groups of animals were infused either with [1,2-13C2]acetate (15 µmol/min/100 g body weight), an exclusive precursor of GABA formation through the glial glutamine pathway, or with [1,2-13C2]glucose (15 µmol/min/100 g body weight), a substrate that can produce GABA through the glial glutamine pathway or by direct metabolism in the neurons. The brains were frozen in situ, extracted with perchloric acid, and analyzed by 13C NMR. In vigabatrin-treated animals [13C]glutamine, a common intermediate for [13C]GABA synthesis from glucose or acetate, was accumulated to similar amounts during infusions with [1,2-13C2]glucose or [1,2-13C2]acetate. However, [13C]GABA accumulation was sevenfold higher during [1,2-13C2]glucose infusions or twofold higher during [1,2-13C2]acetate infusions. These results show that the direct pathway of GABA formation by neuronal metabolism of glucose predominates over the alternative pathway through glial glutamine. Near-equilibrium relationships of the aminotransferases of GABA and aspartate imply that the observed [13C]GABA accumulation occurs initially in the neuronal compartment.  相似文献   

20.
Abstract— When [2-3H]glycerol was injected intracranially into young rats, it was presented as a pulse label, leaving the brain rapidly and giving up much of its labelled hydrogen to water. [2-3H]glycerol was efficiently incorporated into brain lipids, especially into choline and ethanolamine phospholipids. Following injection of a mixture of [3H]- and [14C]-labelled glycerol, the ratio of 3H to 14C in the phospholipids of both whole brain and the microsomal fraction decreased as a function of time after injection. This finding indicated less recycling of the tritium label. This lack of recycling was further indicated by the finding that 94 per cent of the tritium label of phosphatidyl choline was in the glycerol portion of the molecule rather than in the fatty acids. At 2 weeks following injection with [3H]glycerol, 93 per cent of the total radioactivity in brain appeared in the lipid fraction. In contrast, following injection with [14C]glycerol, only 57 per cent of the radioactivity appeared in lipid, with about 20 per cent in protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号