首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotoxic properties of nitrofurazone and furazolidone were studied using the Ames test and SOS-chromotest. Both compounds were found to act as strong mutagens on the TA97 and TA102 strains of S. typhimurium and to induce the SOS-repair system in the PQ37 strain of E. coli. A good concordance was found between the mutagenic activity and the ability to induce the SOS system. Ascorbic acid and sodium selenite only very slightly lowered the genotoxic effect of the 2 nitrofurans studied both in the Ames test and in the SOS-chromotest.  相似文献   

2.
Prophage induction and mutation by alkylaminosulfonates, ethyl aminosulfonate and alkyl methanesulfonates were examined comparatively. Prophage induction was carried out with a lysozyme lysis technique on the lysogenic strain Micrococcus lysodeikticus 53-40 (N5). The sulfonic ester derivatives show a slight lysogenic induction. At higher concentrations their toxicity seems to mask phage detection. Only methyl isopropylaminosulfonate and ethyl aminosulfonate exhibit no or negligible toxic effects, and with these compounds at higher concentrations a strong prophage induction is found. Alkyl sulfonate derivatives induce mutations in the tester strain of Salmonella typhimurium TA1535. Methyl methylaminosulfonate and ethyl N-methyl-N-2-chloroethyl aminosulfonate show a mutagenicity comparable to that of the well-known methyl methanesulfonate or ethyl methanesulfonate. With ethyl aminosulfonate, however, which does not show inactivation, no significant mutagenic effect was observed. DNA alterations were found in the polymerase-deficient strain E. coli P3478. The results of prophage induction and mutagenicity are compared and discussed.  相似文献   

3.
A range of biologically active secondary metabolites with pharmacological application has been reported to occur in marine sponges. The present study was undertaken to provide a set of data on the safety of a hydro-alcoholic extract (ALE) and an aqueous fraction (AQE) from Aplysina fulva Pallas, 1766 (Aplysinidae, Verongida, Porifera). Salmonella typhimurium strains TA97, TA98, TA100 and TA102, Escherichia coli strains PQ65, OG40, OG100, PQ35 and PQ37 and Balb/c 3T3 mouse fibroblasts were used to detect induction of DNA lesions by ALE and AQE. Assays used for these analyses were a bacterial (reverse) mutation assay (Ames test), the SOS-chromotest and the comet assay. Both extracts presented identical infrared 2-oxazolidone spectra. ALE treatment induced a higher frequency of type-4 comets, indicative of increasing DNA migration, in the alkaline comet assay. ALE also induced a weak genotoxic effect, as expressed by the induction factor (IF) values in the test with E. coli strain PQ35 (IF=1.5) and by cytotoxic effects in strains PQ35, PQ65 and PQ37. Positive SOS induction (IF=1.7) was detected in strain PQ37 treated with diluted AQE. No genotoxic effects were observed in strains PQ35, PQ65, OG40 and OG 100 after treatment with AQE dilutions. Using the bacterial (reverse) mutation test and survival assays with or without S9 mix, after 60min of pre-incubation, we observed for strain TA97 treated with ALE a weak mutagenic response (MI=2.2), while cytotoxic effects were seen for strains TA98, TA100 and TA102. AQE did not show mutagenic activity in any of the strains tested, but a weak cytotoxic effect was noted in strain TA102. Our data suggest that both ALE and AQE from A. fulva induce DNA breaks leading to cytotoxicity and mutagenicity under the conditions used.  相似文献   

4.
A range of biologically active secondary metabolites with pharmacological application has been reported to occur in marine sponges. The present study was undertaken to provide a set of data on the safety of a hydro-alcoholic extract (ALE) and an aqueous fraction (AQE) from Aplysina fulva Pallas, 1766 (Aplysinidae, Verongida, Porifera). Salmonella typhimurium strains TA97, TA98, TA100 and TA102, Escherichia coli strains PQ65, OG40, OG100, PQ35 and PQ37 and Balb/c 3T3 mouse fibroblasts were used to detect induction of DNA lesions by ALE and AQE. Assays used for these analyses were a bacterial (reverse) mutation assay (Ames test), the SOS-chromotest and the comet assay. Both extracts presented identical infrared 2-oxazolidone spectra. ALE treatment induced a higher frequency of type-4 comets, indicative of increasing DNA migration, in the alkaline comet assay. ALE also induced a weak genotoxic effect, as expressed by the induction factor (IF) values in the test with E. coli strain PQ35 (IF = 1.5) and by cytotoxic effects in strains PQ35, PQ65 and PQ37. Positive SOS induction (IF = 1.7) was detected in strain PQ37 treated with diluted AQE. No genotoxic effects were observed in strains PQ35, PQ65, OG40 and OG 100 after treatment with AQE dilutions. Using the bacterial (reverse) mutation test and survival assays with or without S9 mix, after 60 min of pre-incubation, we observed for strain TA97 treated with ALE a weak mutagenic response (MI = 2.2), while cytotoxic effects were seen for strains TA98, TA100 and TA102. AQE did not show mutagenic activity in any of the strains tested, but a weak cytotoxic effect was noted in strain TA102. Our data suggest that both ALE and AQE from A. fulva induce DNA breaks leading to cytotoxicity and mutagenicity under the conditions used.  相似文献   

5.
The purpose of this study was to determine if 4 major organophosphate impurities of malathion were active as alkylators of nitrobenzylpyridine (NBP) or as mutagens in the Salmonella typhimurium bioassay. Malathion, isomalathion, O,O,O-trimethyl phosphorothioate, O,O,S-trimethyl phosphorothioate, and O,S,S-trimethyl phosphorodithioate produced alkylated NBP at varying rates. In order of increasing NBP reactivity, the compounds ranked: O,O,O-trimethyl phosphorothioate = O,O,S-trimethyl phosphorothioate less than O,S,S-trimethyl phosphorodithioate less than isomalathion = malathion. At 37 degrees C, the most reactive compounds produced an NBP alkylation rate equal to approximately 25% of the rate produced by methyl methanesulfonate, a potent Salmonella mutagen. However, none of the organophosphates were mutagenic in S. typhimurium TA97, TA98 and TA100 when tested by the standard plate-incorporation method or by the preincubation modification of the plate-incorporation method. The possible relationships between NBP reactivity and the biological activities of these organophosphates are discussed.  相似文献   

6.
Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.  相似文献   

7.
Many metals have been shown to alter the function of a wide range of enzyme systems, including those involved in DNA repair and replication. To assess the impact in vivo of such metal actions a "Microtitre" fluctuation assay was used to examine the ability of Ni(II) to act as a comutagen with simple alkylating agents. In E. coli, Ni(II) chloride potentiated the mutagenicity of methyl methanesulfonate (MMS) in polymerase-proficient strains (WP2+ and WP2-), but not in polA- strains (WP6 and WP67) or in lexA- (CM561) or recA- (CM571) strains. The absence of UV excision repair (WP2- and WP67) had little, if any, effect. An extended lag phase was seen at 2-4 h in the polA- strains following treatment with Ni(II) chloride and MMS, but normal growth resumed thereafter. Results suggested that mutations induced by MMS were fixed during log phase growth and that more than 2 h of exposure were necessary for potentiation by Ni(II) to be observed. Thus, the extended lag phase probably cannot explain the lack of potentiation. RecA-dependence of the comutagenic effect was corroborated with S. typhimurium TA1535 and TA100. Only in the pKM101 containing strain, TA100, was potentiation of ethyl methanesulfonate (EMS) and MMS by Ni(II) chloride evident. The mucAB genes carried on pKM101 increase the sensitivity of TA100 to a variety of mutagens, providing there is a functional recA gene product. Taken together, the data suggest that Ni(II) acts indirectly, as a comutagen, in bacterial systems, possibly affecting processes involving recA- and/or polA-dependent function(s).  相似文献   

8.
The role of nucleotide excision repair in the mutagenicity of the monofunctional alkylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG), and N-ethyl-N-nitrosourea (ENU) in Salmonella typhimurium was examined. The mutagenic potential of the mutagenic agents used increased in the following order: MMS less than ENU less than ENNG less than MNNG. The results obtained confirm the involvement of nucleotide excision repair in the removal of mutagenic lesions from the DNA of S. typhimurium cells exposed to high doses of methylating as well as ethylating agents. At the low doses of all the alkylating agents used, the nucleotide excision repair-proficient strain was mutagenized more efficiently than the uvrB mutant. This phenomenon, a consequence of competition between nucleotide excision-repair enzymes and constitutive O6-methylguanine-DNA methyltransferase, is discussed.  相似文献   

9.
The quantitative relationship between carcinogenicity in rodents and mutagenicity in Salmonella typhimurium was examined, by using 10 monofunctional alkylating agents, including N-nitrosamides, alkyl methanesulfonates, epoxides, β-propiolactone and 1,3-propane sultone. The compounds were assayed for mutagenicity in two S. typhimurium strains (TA1535 and TA100) and in plate and liquid assays. The mutagenic activity of the agents was compared with their alkylating activity towards 4-(4′-nitrobenzyl)pyridine and with their half-lives (solvolysis constants) in an aqueous medium. No correlations between these variables were found, nor was mutagenic activity correlated with estimates of carcinogenicity in rodents.There was a positive relationship between carcinogenicity and the initial ratios of 7-: O6-alkylguanine formed or expected after their reaction with double-stranded DNA in vitro. The results suggest that alkylation of guanine at position O6 (or at other O atoms of DNA bases) may be a critical DNA-base modification that determines the overall carcinogenicity of these alkylating agents in rodents.  相似文献   

10.
Two tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 were assayed in the SOS-chromotest using PQ 37 (uvr A) and PQ 35 (uvr+) E. coli K12 strains, in the presence of S9 fraction from Aroclor-induced rats. Both compounds were able to induce the expression of SOS functions in uvr A bacteria, in the following order: Trp-P-1 less than Trp-P-2 less than aflatoxin B1, at low concentrations (less than 125 ng/assay). In this range, the induction of SOS functions was significantly decreased in the uvr+ strain. This implies that the uvr gene product plays an important role in the repair of genotoxic damage induced by Trp-P-1 and Trp-P-2. At higher concentrations (125-500 ng/assay), Trp-P-1 became more efficient in inducing SOS functions than Trp-P-2 and excision repair was less efficient than at low concentration.  相似文献   

11.
Mutagenic and SOS-inducing potential of 23 derivatives of fluorenone, phenanthrenequinone and biphenyl have been studied in tester strains of Salmonella typhimurium and in Escherichia coli strain PQ 37. 14 of these compounds revert the mutation hisD3052 (much less than -1 much greater than type), but none of them induce mutations in the strain TA 1535. Maximal mutagenic activity has been shown in strain TA 1538 for amide of 2,7-dinitrofluorenone-4-carbonic acid (580 revertants per nmol), 2,7-dinitrophenanthrenequinone (308 revertants per nmol), 2,4,7-trinitrophenanthrenequinone (306 revertants per nmol) and 2',4,4'-trinitrobiphenyl-2-carbonic acid (251 revertants per nmol). In plasmid-containing strain TA 98 the mutagenic potential of the compounds tested is lower than in the TA 1538 strain. It has been suggested that mutagenic activity of these compounds can be attributed to their acceptor properties, namely, the ability to form charge transfer complexes with DNA. SOS-inducing activity has been shown for 5 compounds, also positive in mutation induction. Mutagenic and SOS-inducing activities positively correlate in fluorenone derivatives. Among phenanthrenequinone derivatives, compounds with high mutagenic activity only can induce SOS response. None of the biphenyls tested induce SOS functions. The compounds giving the positive result in the SOS-chromotest have rigid co-planar structure.  相似文献   

12.
Genotoxic effects of both amitraz and its metabolites made by S9 fraction were reevaluated in short-term bacterial assays. Neither amitraz nor its metabolites induced frameshift mutation or caused base-pair substitution as detected by the Ames test. They also did not introduce any damages into DNA recognized by correndonuclease II as shown by the repair test. Metabolites of amitraz (but not amitraz itself) induced the SOS-repair system in E. coli strain PQ 243 tagA, alkA which was deficient in N-glycosylases. It is concluded that neither amitraz nor its metabolites have mutagenic activity. In contrast to amitraz, its metabolites alkylate DNA in the N3-position of adenine.  相似文献   

13.
17 monofunctional methanesulphonates of widely varying structures were investigated in the SOS chromotest using the E. coli strain PQ37. All compounds tested were positive in this assay. The monofunctional methanesulphonates in general possess low SOSiP values. Five of the compounds tested i.e. iBMS, NpMS, 2 PhPMS, PkMS and 1,3-DC12PMS (for abbreviations see Table 1) did not show increasing beta-galactosidase activity and both the positive induction factors and the positive SOSiP values resulted from the toxicity correction as performed according to Quillardet and Hofnung (1985). In general methanesulphonates with a higher SN1 reactivity, in particular the secondary compounds, showed clear genotoxic activities whereas those possessing low SN1 reactivities (primary compounds) induced a low SOS repair indicating that the alkylation of O-atoms in the DNA bases contributes more to the induction of SOS repair in strain PQ37 than N-alkylations. The only exception was methyl methanesulphonate (MMS) which possessed a very high SN2 reactivity but a rather low SN1 reactivity. It had the highest SOSiP value of all tested methanesulphonates. No dependence of the genotoxicity on the SN2 reactivity could be found in this series. In general the phenyl-substituted methanesulphonates showed higher SOSiP values, which is presumably due to their relatively high SN1 reactivities and their relatively long life times in aqueous systems. There is a clear relationship between SN1 reactivities and the SOSiP values: the SOSiP values increase with rising SN1 reactivities reaching a maximum at iPMS after which the genotoxicities decrease due to the decreasing life times. The compounds with very high SN1 reactivities also possess very high hydrolysis rates. A good correlation could be established between the mutagenicities in S. typhimurium TA100 and the SOS chromotest (strain PQ37). Only 4 small deviations from this correlation could be found. The reasons for these deviations are discussed.  相似文献   

14.
To determine correlations between the biological action pattern and chemical reactivity of alkylating agents, the rate constants for reactions of 1,3-propane sultone and 1,4-butane sultone with a series of nucleophiles at 37 degrees C have been determined. Previously published data on the mutagenicity of the two sultones and of some alkyl methanesulfonates and dialkyl sulfates towards Schizosaccharomyces pombe have been used in the evaluation of the dependence of mutagenic effectiveness on chemical reactivity. It is of interest to note that the mutagenic effectiveness of the two sultones, if expressed per alkylating event at a certain low nucleophilicity is the same as that of e.g. methyl methanesulfonate and ethyl methanesulfonate.  相似文献   

15.
The following organophosphates were tested for their ability to induce DNA damage in a rec-type repair test with Proteus mirabilis strains PG713 (rec- hcr-) and PG273 (wild-type) and point mutations in the his- strain TA100 of Salmonella typhimurium: O,O-dimethyl-O-(1,2-dibromo-2,2-dichloroethyl)-phosphate (NALED); trichlorfon-O-methyl ether (TCP-O-ME), O,O-dimethyl-(1-methoxy-2,2,2-trichlorethyl)-phosphonate; trichlorfon-O-methyl ether vinyl derivative (TCP-O-MEVD), O,O-dimethyl-(1-methoxy-2,2-dichlorovinyl)-phosphonate. All compounds were negative in the repair test but induced base pair substitutions in S. typhimurium. The mutagenicity of NALED is due to the direct alkylating ability of the parental molecule and to mutagenic metabolites generated by enzymatic splitting of the side chain. Glutathion-dependent enzymes in the S9-mix eliminate the mutagenic activity of NALED completely. Mutation induction by TCP-O-ME and TCP-O-MEVD is predominantly caused by the reactive O-methyl ether configuration of the side chain and is resistant to metabolic inactivation by NADPH- or glutathion-dependent enzymatic pathways in the S9-mix of mice.  相似文献   

16.
The mutagenicity of the base analogue, 2-amino-N6-hydroxyadenine (AHA), was tested in Salmonella typhimurium TA100 and TA98 and in Chinese hamster lung (CHL) cells. AHA showed very potent mutagenicity in TA100 without S9 mix, inducing 25,000 revertants/micrograms. The mutagenicity increased about 2-fold upon addition of S9 mix containing 10 microliters S9. AHA was found to be one of the strongest mutagens for TA100. Addition of S9 mix containing 100 microliters S9 induced no significant increase of revertants with AHA at amounts up to 50 ng per plate. AHA was also mutagenic for the frameshift mutant, TA98, without S9 mix, the mutagenicity for TA98 being about 1/1000 of that for TA100. When the mutagenicity of AHA was tested in CHL cells, with diphtheria toxin resistance (DTr) as a selective marker in the absence of S9 mix with a 3-h treatment of cells, DTr mutants increased dose-dependently at concentrations of 2.5-15 micrograms/ml. When cells were incubated with AHA for 24 h, a 200-fold increase in the number of DTr mutants was observed; the mutagenicity was 500-fold higher than that of ethyl methanesulfonate. This marked increase of mutagenicity by prolonged incubation may indicate that AHA induces mutations mainly after incorporation into DNA. The addition of a small amount of S9 increased the mutagenicity obtained with a 3-h treatment 2-fold, but a larger amount of S9 decreased the mutagenicity as was found with S. typhimurium TA100.  相似文献   

17.
5 oil dispersants and a sample of paraffin were devoid of mutagenic activity in the Ames reversion test, with and without S9 mix, using 7 his- S. typhimurium strains (TA1535, TA1537, TA1538, TA97, TA98, TA100, TA102). However, 3 dispersants produced direct DNA damage in E. coli WP2, which was not repairable in repair-deficient strains (WP2uvrA, CM871, TM1080), as shown by two different DNA-repair test procedures. The uvrA excision-repair system was in all cases the most important mechanism involved in repairing the DNA damage produced by oil dispersants, while the combination of uvrA with other genetic defects (polA, recA, lexA) decreased the efficiency of the system. The observed genotoxic effects were considerably lowered in the presence of S9 mix containing liver S9 fractions from Aroclor-treated rats. The sample of oil dispersant yielding the most pronounced DNA damage in repair-deficient E. coli failed to induce gene sfiA in E. coli (strain PQ37), using the SOS chromotest, or mitotic crossing-over in Saccharomyces cerevisiae (strain D5). The direct toxicity of the oil dispersant to both bacterial and yeast cells was markedly decreased in the presence of rat-liver preparations. These two short-term tests were effective in detecting the genotoxicity of both direct-acting compounds (such as 4-nitroquinoline N-oxide and methyl methanesulfonate) and procarcinogens (such as cyclophosphamide, 2-aminoanthracene and 2-aminofluorene). Moreover, the SOS chromotest was successfully applied to discriminate the activity of chromium compounds as related to their valence (i.e. Cr(VI) genotoxic and Cr(III) inactive). Combination of oil dispersants with Cr(VI) compounds did not affect the direct mutagenicity to S. typhimurium (TA102) of a soluble salt (sodium dichromate) nor did it result in any release of a water-soluble salt (lead chromate), as also confirmed by analytical methods. On the other hand, exposure to sunlight tended to decrease, to a slow rate, the direct genotoxicity of an oil dispersant in the bacterial DNA-repair test.  相似文献   

18.
The mutagenicity of 1,2-dibromoethane is highly dependent upon its conjugation to glutathione by the enzyme glutathione S-transferase. The conjugates thus formed can react with DNA and yield almost exclusively N7-guanyl adducts. We have synthesized the S-haloethyl conjugates of cysteine and glutathione, as well as selected methyl ester and N-acetyl derivatives, and compared them for ability to produce N7-guanyl adducts with calf thymus DNA. The cysteine compounds were found to be more reactive toward calf thymus DNA and yielded higher adduct levels than did the glutathione compounds. Adduct levels tended to be suppressed when there was a net charge on the compound and were not affected by substitution of bromine for chlorine, as expected for a mechanism known to involve an intermediate episulfonium ion. Sequence-selective alkylation of fragments of pBR322 DNA was investigated. The compounds produced qualitatively similar patterns of alkylation, with higher levels of alkylation at runs of guanines. The compounds were also tested for their ability to act as direct mutagens in Salmonella typhimurium TA98 and TA100. None of the compounds caused mutations in the TA98 frameshift mutagenesis assay. In the strain TA100, where mutation of a specific guanine by base-pair substitution produces reversion, all compounds were found to produce mutations, but the levels of mutagenicity did not correlate at all with the levels of DNA alkylation. The ratio of mutations to adducts varied at least 14-fold among the various N7-guanyl adducts examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Dependence on S. typhimurium enzymes of mutagenicities of nitrobenzene (NB) and o-, p-chloronitrobenzenes (o-, p-CNBs), which are only mutagenic in the presence of S9 and norharman (NOH), was investigated using a nitroreductase-deficient strain TA98NR and an esterifying enzyme-deficient strain TA98/1,8-DNP6. NB exhibited mutagenicity towards TA98 but did not towards TA98NR strain in spite of the presence of S9 in the assay system. The mutagenicity of o-CNB towards TA98NR was significantly lower than that of o-CNB towards TA98. In contrast to NB and o-CNB, synthesized phenylhydroxylamine (PHA) and o-chlorophenylhydroxylamine (o-CPHA) exhibited approximately the same mutagenicity towards both tester strains. These results indicate that the nitroreduction required for the appearance of mutagenicity of the nitrobenzene derivatives in the presence of S9 and NOH is dependent on the nitroreductase of the tester strain. In addition, the mutagenicities of PHA and p-CPHA were significantly higher towards TA98/1,8-DNP6 than towards TA98, suggesting that the esterification of their hydroxylamines produced inactivation rather than activation. From these results, it was concluded that S9 and NOH play a role in metabolic activation other than the reduction of the nitro group to hydroxylamine and subsequent esterification for the mutagenesis of NB and its derivatives.  相似文献   

20.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号