首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogenase is composed of two separately purified proteins called the Fe protein and the MoFe protein. In Azotobacter vinelandii the genes encoding these structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). The MoFe protein contains an ironmolybdenum cofactor (FeMo cofactor) whose biosynthesis involves the participation of at least five gene products, nifQ, nifB, nifN, nifE, and nifV. In this study an A. vinelandii mutant strain, which contains a defined deletion within the nifH (Fe protein) gene, was isolated and studied. This mutant is still able to accumulate significant amounts of MoFe protein subunits. However, extracts of this nifH deletion strain have only very low levels of MoFe protein acetylene reduction activity. Fully active MoFe protein can be reconstituted by simply adding isolated FeMo cofactor to the extracts. Fe protein is not necessary to stabilize or insert this preformed FeMo cofactor into the FeMo cofactor-deficient MoFe protein synthesized by the nifH deletion strain. Extracts of the nifH deletion strain can carry out molybdate and ATP-dependent in vitro FeMo cofactor biosynthesis provided Fe protein is added, demonstrating that they contain the products encoded by the FeMo cofactor biosynthetic genes. These data demonstrate that the Fe protein is physically required for the biosynthesis of FeMo cofactor in A. vinelandii.  相似文献   

2.
3.
Nitrogenase-catalyzed reactions using Ti(III) were examined under a wide variety of conditions to determine the suitability of Ti(III) to serve as a general nitrogenase reductant. Solutions prepared from H2-reduced TiCl3, aluminum-reduced TiCl3, TiCl2, evaporated TiCl3 from an HCl, solution, and TiF3 were evaluated as reductants. Three general types of reactivity were observed. The first showed that, below Ti(III) concentrations of about 0.50 mM, nitrogenase catalysis utilized Ti(III) in a first-order reaction. The second showed that, above 0.50 mM, the rate of nitrogenase catalysis was zero order in Ti(III), indicating the enzyme was saturated with this reductant. Above 2.0-5.0 mM, nitrogenase catalysis was inhibited by Ti(III) depending on the titanium source used for solution preparation. This inhibition was investigated and found to be independent of the buffer type and pH, while high salt and citrate concentrations caused moderate inhibition. [Ti(IV)] above 2.0-3.0 mM and [Ti(III)] above about 5.0 mM were inhibitory. ATP/2e values were 4-5 for [Ti(III)] at or below 1.0-2.0 mM, 2.0 from 5.0 to 7.0 mM Ti(III) where nitrogenase is not inhibited, and 2.0 above 7.0 mM Ti(III) where severe inhibition occurs. For nitrogenase-catalyzed reactions using Ti(III) as reductant, the potential of the solution changes with time as the Ti(III)/Ti(IV) ratio changes. From the change in the rate of product formation (Ti(III) disappearance) with change in solution potential, the rate of nitrogenase catalysis was determined as a function of solution potential. From such experiments, a midpoint turnover potential of -480 mV was determined for nitrogenase catalysis with an associated n = 2 value.  相似文献   

4.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

5.
The MoFe protein component of the complex metalloenzyme nitrogenase is an alpha2beta2 tetramer encoded by the nifD and the nifK genes. In nitrogen fixing organisms, the alpha and beta subunits are translated as separate polypeptides and then assembled into tetrameric MoFe protein complex that includes two types of metal centers, the P cluster and the FeMo cofactor. In Azotobacter vinelandii, the NifEN complex, the site for biosynthesis of the FeMo cofactor, is an alpha2beta2 tetramer that is structurally similar to the MoFe protein and encoded as two separate polypeptides by the nifE and the nifN genes. In Anabaena variabilis it was shown that a NifE-N fusion protein encoded by translationally fused nifE and nifN genes can support biological nitrogen fixation. The structural similarity between the MoFe protein and the NifEN complex prompted us to test whether the MoFe protein could also be functional when synthesized as a single protein encoded by nifD-K translational fusion. Here we report that the NifD-K fusion protein encoded by nifD-K translational fusion in A. vinelandii is a large protein (as determined by Western blot analysis) and is capable of supporting biological nitrogen fixation. These results imply that the MoFe protein is flexible in that it can accommodate major structural changes and remain functional.  相似文献   

6.
Conditions are defined in which the oxygen-labile nitrogenase components from Azotobacter vinelandii can be protected against oxygen inactivation by the so-called Fe/S protein II. It is demonstrated that oxygen protection can be achieved by complex formation of the three proteins. Complex formation was studied by gel chromatography. Only when the three proteins are in the oxidized state and MgCl2 is present, can an oxygen-tolerant complex be isolated. Quantitative SDS/polyacrylamide gel electrophoresis of such complexes, yielded an average ratio of nitrogenase component 2/nitrogenase component 1 (Av2/Av1) of 2.4 +/- 0.5. Protection by Fe/S protein II was correlated with the amount of [2 Fe-2S] clusters present in the protein and not by the amount of protein. Measurements of the amount of iron and sulfide of Fe/S protein II showed that the iron and sulfide content of the protein was variable. The maximum values found indicate that Fe/S protein II contains two [2Fe-2S] clusters per dimer of 26 kDa. Full protection by Fe/S protein II was obtained with a ratio of Fe/S protein II/Av1 of 1.1 +/- 0.2; the Fe/S protein II containing two [2Fe-2S] clusters per dimer of 26 kDa. When Fe/S protein II contains less [2Fe-2S] clusters, more protein is necessary to obtain full protection. The three-component nitrogenase complex is also oxygen stable in the presence of MgATP or MgADP. Analysis in the ultracentrifuge showed that the major fraction of the reconstituted complex has a sedimentation coefficient centered around 34S. A small fraction (less than 30%) sediments with values centered around 111 S. This suggests an average mass for the oxygen-stable nitrogenase complex of 1.5 MDa. Taking into account the determined stoichiometry of the individual proteins, the molecular composition of the oxygen-stable nitrogenase complex is presumably 4 molecules of AV1,8--12 molecules of aAV2 and 4--6 molecules of Fe/S protein II containing two [2Fe-2S] clusters per dimer of 26 kDa.  相似文献   

7.
Z C Wang  A Burns  G D Watt 《Biochemistry》1985,24(1):214-221
The O2 stability of the MoFe protein, the Fe protein, a 1:1 mixture of these proteins, and a 1:1 mixture in the presence of the Azotobacter vinelandii FeS-II protein has been studied as a function of time under controlled O2 partial pressures. The Fe protein is much more sensitive to O2 exposure than is the MoFe protein. The presence of the FeS-II protein at a 1:1 ratio with the component proteins measurably increases the O2 stability of the MoFe and Fe proteins. O2 inactivation of the MoFe protein was studied in some detail and found to be quite complex. At least three partially overlapping reactions are suggested. The first is the reversible oxidation of the metal clusters of the MoFe protein to the combined extent of 12 electrons with full retention of activity. The second phase consists primarily of activity loss with little increase in the extent of reversible oxidation. The third phase continues to decrease the protein activity but is also accompanied by formation of a g = 2.0 EPR signal and more extensive oxidation. Ultracentrifugation studies of the FeS-II protein at a 1:1:1 ratio with the Fe and MoFe proteins do not support the formation of the Bulen complex. The formation of other O2-stable complexes is discussed.  相似文献   

8.
Respiratory protection of nitrogenase in Azotobacter vinelandii   总被引:5,自引:0,他引:5  
  相似文献   

9.
The Mo-Fe protein of Azotobacter vinelandii nitrogenase was fractionated on 9.5 M urea isoelectric focusing gels and gave three distinct bands (alpha', alpha", beta'). Protein focused on nondenaturing gels gave a single brown band, which when excised and refocused on a denaturing gel gave the three-band pattern. Partial trypsin digestion of the subunits and fractionation of the peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the alpha' and alpha" polypeptide moieties were the same. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the alpha' and beta' proteins with appropriate molecular weight standards indicated Mr = 61,000 and 57,000, respectively. This is consistent with an overall alpha 2 beta 2 mass of 236,000 daltons.  相似文献   

10.
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii   总被引:22,自引:0,他引:22  
A new nitrogenase from Azotobacter vinelandii has been isolated and characterized. It consists of two proteins, one of which is almost identical with the Fe protein (component 2) of the conventional enzyme. The second protein (Av1'), however, has now been isolated and shown to differ completely from conventional component 1, i.e., the MoFe protein. This new protein consists of two polypeptides with a total molecular weight of around 200,000. In place of Mo and Fe it contains V and Fe with a V:Fe ratio of 1:13 +/- 3. The ESR spectrum of Av1' also differs from conventional component 1 in that lacks the g = 3.6 resonance that arises from the FeMo cofactor but contains an axial signal with gav less than 2 as well as inflections in the g = 4-6 region possibly arising from an S = 3/2 state. This new enzyme can reduce dinitrogen, protons, and acetylene but is only able to utilize 10-15% of its electrons for the reduction of acetylene.  相似文献   

11.
Preparations of nitrogenase from Azotobacter vinelandii show an ATP synthetase activity when incubated in the presence of ADP, phosphate, ammonium chloride and an oxidizing agent. The synthesis is linked to an oxidation-reduction and the activity parallels nitrogenase activity through purification and in a step gradient sedimentation. The reductive dephosphorylation of nitrogen fixation may possibly be reversed to yield an oxidative phosphorylation.  相似文献   

12.
Summary Nitrogenase of Azotobacter vinelandii is sensitive to oxygen, and sensitivity develops during purification. Such inactivation is well prevented by 0.1% hydroquinone plus 0.01% ascorbate, which are also effective in preventing inactivation of enzyme on storage under H2. Activity is proportional to ferrous iron content of crude sample of enzyme. On storage at 0°C, 0.3 M KCl inactivates the enzyme, while KCl stabilizes its components. Nitrogenase is not cold labile, while the components are cold labile; Fe, Mo-component is most stable at 22°C and Fe-component at 13.5°C. Nitrogenase substrates, except N2, stabilize nitrogenase, but not the components.  相似文献   

13.
The iron molybdenum cofactor of Azotobacter vinelandii nitrogenase has been solubilized for the first time in dimethylformamide and acetonitrile. These solutions have the ability to reconstitute the inactive nitrogenase of the UW 45 mutant of A. vinelandii and exhibit an S = 3/2 EPR signal similar to that for the cofactor in N-methylformamide. Our ability to obtain solutions of FeMoco in these solvents seemingly refutes a previous hypothesis concerning the necessity of solvents with a dissociable proton for iron molybdenum cofactor solubility and should facilitate the spectroscopic characterization of this important species.  相似文献   

14.
K L Hadfield  W A Bulen 《Biochemistry》1969,8(12):5103-5108
  相似文献   

15.
Hydrazine has been tested as a substrate and inhibitor of nitrogenase from Azotobacter vinelandii. It is a linear noncompetitive inhibitor of acetylene reduction, with Kil = Kis = 80 mM at pH 8.0. Carbon monoxide is a linear noncompetitive inhibitor of hydrazine reduction with Kii = Kis = 2 × 10?4atm. The inhibition of acetylene reduction by hydrazine is unaffected by the presence of hydrogen, and hydrogen does not inhibit the reduction of hydrazine. Hydrazine can completely suppress hydrogen evolution, while not inhibiting phosphate hydrolysis. The apparent Km for hydrazine reduction varies with pH, reaching a limiting value of about 25 mM at high pH. The apparent Ki for hydrazine inhibition of hydrogen evolution reaches a similar limiting value at high pH. By varying the concentration of ATP it is possible to alter the relative allocation of electrons to acetylene or hydrazine. Hydrazine is a relatively more potent inhibitor of acetylene reduction at low levels of ATP. It is concluded that hydrazine is able to react effectively with a less reduced state of the enzyme from A. vinelandii than is acetylene or dinitrogen.  相似文献   

16.
The quaternary structure of the Mo-Fe-protein from Azotobacter vinelandii has been studied by electron microscopy. A model of the molecule of the Mo-Fe-protein has been proposed: two alpha subunits are displaced relative to two beta subunits along a twofold axis, so the molecule can be characterized by the point-group pseudosymmetry 222. Computer averaging of the images showed that one of the projections of the molecule could be characterized by twofold rotational symmetry. Micrographs of nitrogenase recombined complex (Mo-Fe-protein + Fe-protein) have been obtained. They showed particles close in size and form to the Mo-Fe-protein molecule. Therefore, it has been proposed that the Fe-protein could be situated in the central cavity of Mo-Fe-protein.  相似文献   

17.
Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii   总被引:8,自引:0,他引:8  
A procedure has been developed to examine some of the functional roles of the 14 cysteinyl residues in the nitrogenase Fe-protein (Av2) from Azotobacter vinelandii. The reduced form of Av2 was alkylated with iodo[2-14C]acetic acid under a variety of experimental conditions, e.g. reaction in the presence of nucleotides, alpha,alpha'-dipyridyl and nucleotides, or denaturants. The labeled cysteinyl residues were identified and quantified using an analytical DEAE-Sepharose ion exchange chromatography peptide mapping technique based upon the known amino acid sequence (Hausinger, R. P., and Howard, J. B. (1982) J. Biol. Chem. 257, 2483-2490). From the results of the labeling experiments, the following features of the Av2 structure have been proposed. 1) Av2 contains no disulfides, hyperreactive thiols, or surface thiols as defined by reaction with iodoacetic acid. 2) Cysteines 97 and 132 are the probable ligands for the Av2 Fe:S center which is bound symmetrically between subunits. 3) MgATP partially protects cysteine 85 from carboxymethylation by iodoacetic acid and may be part of the nucleotide-binding site. 4) Of the five nonligand thiols only cysteines 5 and 184 are completely alkylated when Av2 is denatured in hexamethylphosphoramide, whereas all five nonligand thiols appear to rapidly exchange at the Fe:S center if the protein is denatured in the absence of alkylating reagents. 5) Both Av2 and apo-Av2 appear to undergo a reversible conformational change upon binding MgATP.  相似文献   

18.
G D Watt  A Burns  S Lough  D L Tennent 《Biochemistry》1980,19(21):4926-4932
The MoFe protein from Azotobacter vinelandii undergoes a six-electron oxidation by various organic dye oxidants with full retention of initial activity. Reduction of the oxidized protein by S2O42- and by controlled potential electrolysis indicates the presence of two reduction regions at -290 and -480 mV, each requiring three electrons for complete reaction. Control of the oxidation conditions provides a means for preparing two distinct MoFe protein species selectively oxidized by three electrons. Selective reduction of the redox region at -290 mV causes development of the EPR signal associated with fully reduced MoFe protein while reduction at -480 mV produces a change in the visible spectrum but has no effect on the EPR signal intensity. Kinetic differences for reduction of the two redox regions indicate that the cofactor region undergoes a more rapid reaction with reductant than the other metal redox sites.  相似文献   

19.
Nitrogenase activity in cell-free extracts of Azotobacter vinelandii declines during encystment. Upon germination a rapid increase in activity is observed, which is suppressed by rifampicin, suggesting that de novo biosynthesis of the nitrogenase proteins is required. The decline of activity during encystment is accompanied by disappearance of both nitrogenase proteins from cell extracts, indicating irreversible proteolysis. Total proteinase activity does not change significantly during encystment.  相似文献   

20.
Meniscus depletion sedimentation equilibrium ultracentrifuge experiments were performed on purified MoFe and Fe proteins of Azotobacter vinelandii. The MoFe protein was found to have a molecular weight of 245,000, using an experimentally confirmed partial specific volume of 0.73. The MoFe protein formed one band on sodium dodecyl sulfate gel electrophoresis and had a subunit molecular weight of 56,000. The subunit molecular weight from ultracentrifuge experiments in 8 M urea was 61,000. The molecular weight of the Fe protein was calculated to be 60,500 in meniscus depletion experiments. Similar experiments in 8 M urea solvent indicated a subunit molecular weight of 30,000. A subunit molecular weight of 33,000 was obtained from sodium dodecyl sulfate gel electrophoresis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号