首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types. Excision repair of pyrimidine dimers produced by UV in E coli is initiated by an incision event catalyzed by a complex composed of uvrA, uvrB, and uvrC gene products. Multiple exonuclease and polymerase activities are available for the subsequent excision and resynthesis steps. In addition to the constitutive pathway, which produces short patches of 20–30 nucleotides, an inducible excision repair process exists that produces much longer patches. This long patch pathway is controlled by the recA-lexA regulatory circuit and also requires the recF gene. It is apparently not responsible for UV-induced mutagenesis. However, the ability to perform inducible long patch repair correlates with enhanced bacterial survival and with a major component of the Weigle reactivation of bacteriophage with double-strand DNA genomes. Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed. Repair in mammalian cells may be more complicated than in bacteria because of the structure of chromatin, which can affect both the distribution of DNA damage and its accessibility to repair enzymes. A coordinated alteration and reassembly of chromatin at sites of repair may be required. We have observed that the sensitivity of digestion by staphylococcal nuclease (SN) of newly synthesized repair patches resulting from excision of furocoumarin adducts changes with time in the same way as that of patches resulting from excision of pyrimidine dimers. Since furocoumarin adducts are formed only in the SN-sensitive linker DNA between nucleosome cores, this suggests that after repair resynthesis is completed, the nucleosome cores in the region of the repair event do not return exactly to their original positions. We have also studied excision repair of UV and chemical damage in the highly repeated 172 base pair α DNA sequence in African green monkey cells. In UV irradiated cells, the rate and extent of repair resynthesis in this sequence is similar to that in bulk DNA. However, in cells containing furocoumarin adducts, repair resynthesis in α DNA is only about 30% of that in bulk DNA. Since the frequency of adducts does not seem to be reduced in α DNA, it appears that certain adducts in this unique DNA may be less accessible to repair. Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5′ pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (denV) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excision repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells.  相似文献   

3.
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.  相似文献   

4.
The gene 32 mutation amA453 sensitizes bacteriophage T4 to the lethal effects of ultraviolet (UV) irradiation, methyl methanesulfonate and angelicin-mediated photodynamic irradiation when treated particles are plated on amber-suppressing host cells. The increased UV sensitivity caused by amA453 is additive to that caused by mutations in both the T4 excision repair (denV) and recombination repair (uvsWXY) systems, suggesting the operation of a third kind of repair system. The mutation uvs79, with many similarities to amA453 but mapping in gene 41, is largely epistatic to amA453. The mutation mms1, also with many similarities to amA453, maps close to amA453 within gene 32 and is largely epistatic to uvs79. Neither amA453 nor uvs79 affect the ratio of UV-induced mutational to lethal hits, nor does amA453 affect spontaneous or UV-enhanced recombination frequencies. Gene 32 encodes the major T4 ssDNA-binding protein (the scaffolding of DNA replication) and gene 41 encodes a DNA helicase, both being required for T4 DNA replication. We conclude that a third repair process operates in phage T4 and suggest that it acts during rather than before or after DNA replication.  相似文献   

5.
Replication protein A (RPA), a highly conserved single-stranded DNA-binding protein in eukaryotes, is a stable complex comprising three subunits termed RPA1, RPA2, and RPA3. RPA is required for multiple processes in DNA metabolism such as replication, repair, and homologous recombination in yeast (Saccharomyces cerevisiae) and human. Most eukaryotic organisms, including fungi, insects, and vertebrates, have only a single RPA gene that encodes each RPA subunit. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, possess multiple copies of an RPA gene. Rice has three paralogs each of RPA1 and RPA2, and one for RPA3. Previous studies have established their biochemical interactions in vitro and in vivo, but little is known about their exact function in rice. We examined the function of OsRPA1a in rice using a T-DNA insertional mutant. The osrpa1a mutants had a normal phenotype during vegetative growth but were sterile at the reproductive stage. Cytological examination confirmed that no embryo sac formed in female meiocytes and that abnormal chromosomal fragmentation occurred in male meiocytes after anaphase I. Compared with wild type, the osrpa1a mutant showed no visible defects in mitosis and chromosome pairing and synapsis during meiosis. In addition, the osrpa1a mutant was hypersensitive to ultraviolet-C irradiation and the DNA-damaging agents mitomycin C and methyl methanesulfonate. Thus, our data suggest that OsRPA1a plays an essential role in DNA repair but may not participate in, or at least is dispensable for, DNA replication and homologous recombination in rice.In a population of organisms, it is crucial to maintain the integrity of genome among individuals as well as shuffle genetic information at the population level. To maintain such genetic integrity, cells have evolved elaborate mechanisms such as base excision repair (BER; Hegde et al., 2008), nucleotide excision repair (NER; Shuck et al., 2008), homologous recombination (HR; Li and Heyer, 2008) repair, and nonhomologous end joining (Weterings and Chen, 2008) pathways to repair diverse types of DNA damage. To allow for variation, however, organisms utilize meiosis to shuffle genetic material so as to increase genetic diversity in populations and in the species.DNA double-strand break (DSB) repair is particularly important in maintaining the integrity of genome among individuals and shuffling genetic information among population, because DSBs are generated not only in meiotic cells but also from the action of certain endogenous or exogenous DNA-damaging agents and during repair of other kinds of DNA lesions by NER or BER (West et al., 2004; Bleuyard et al., 2006). The past decade has witnessed an explosion in understanding of this complex process by using yeast (Saccharomyces cerevisiae) as a model organism (Aylon and Kupiec, 2004). Cells can repair DSBs by the relatively inaccurate process of rejoining the two broken ends directly (i.e. nonhomologous end joining) or much more accurately by HR (Bleuyard et al., 2006; Wyman and Kanaar, 2006). These two pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type (Shrivastav et al., 2008). According to the current general model for meiotic DSB repair (Bishop and Zickler, 2004; Ma, 2006; San Filippo et al., 2008), when DSBs occur the MRN complex (composed of Mre11, Rad50, and NBS1) resects the DSBs to generate 5′→3′ single-stranded DNA (ssDNA) ends. Subsequently, the replication protein A (RPA) protein complex binds to the ssDNA ends to protect them from attack by endogenous exonucleases; then, in concert with catalysis by Rad52, Rad55, and Rad57, the recombinase Rad51 displaces RPA, resulting in the generation of a Rad51 nucleoprotein filament that in turn catalyzes the search and invasion into the recombination partner with the help of proteins belonging to the RAD52 epistasis group to form a D loop that accompanies DNA synthesis. Thereafter, at least two competing mechanisms may come into play. One is the DSB repair pathway, in which the capture of the second DSB end and additional DNA synthesis result in an intermediate that harbors two Holliday junctions. The subsequent resolution of Holliday junctions results in the formation of crossovers. Alternatively, in the synthesis-dependent strand annealing pathway, the D loop dissociates and the invading single strand with newly synthesized DNA reanneals with the other DSB end, followed by gap-filling DNA synthesis and ligation, forming only noncrossover products (Ma, 2006; San Filippo et al., 2008).RPA is comprised of three subunits of RPA1, 2, and 3, alternatively termed as RPA70, 32, and 14, respectively, according to their apparent Mrs (Wold, 1997; Iftode et al., 1999). RPA is an essential protein in various DNA metabolism pathways such as DNA replication, repair, and HR (Wold, 1997; Iftode et al., 1999). In these pathways, the most basic function of RPA is binding to ssDNA to protect it from exonucleases, and its general roles in DNA metabolism depend on its interactions with other proteins in various pathways (Wold, 1997; Iftode et al., 1999). For example, in human NER pathway, RPA binds to damaged DNA and interacts with xeroderma pigmentosum damage-recognition protein, XPA, in the damage recognition step, and then the endonucleases XPG and ERCC1/XPF are recruited to the RPA-XPA-damaged DNA complex in the excision step (He et al., 1995). Interactions of RPA with those proteins are critical in this process (Wold, 1997; Iftode et al., 1999). A great deal of protein dynamics research has indicated that the interactions between RPA and other DNA-metabolism proteins are choreographed on the ssDNA to recruit the required protein present at the proper time (Fanning et al., 2006).Human, animals, and fungi have single copy for each subunit of RPA (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), however, have multiple genes for most RPA subunits (Ishibashi et al., 2006; Shultz et al., 2007). Most of them have not unveiled exact function up to now. To elucidate the molecular basis of meiosis in rice, we performed a large-scale screen for sterile mutants using our T-DNA insertion mutant library (Wu et al., 2003). Previously, we reported the cloning of OsPAIR3, a novel gene required for homologous chromosome pairing and synapsis in rice (Yuan et al., 2009). Here we report the characterization of another sterile mutant with a T-DNA insertion in OsRPA1a. Our results indicate that OsRPA1a is essential for DNA repair but may play redundant roles in DNA replication and recombination in rice.  相似文献   

6.
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.  相似文献   

7.
A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation.  相似文献   

8.
9.
10.
Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere''s own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5′TTAGGG/CCCTAA3′) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.  相似文献   

11.
12.
多种化学、物理及生物因素可诱发细胞DNA损伤,损伤后DNA损伤位点被相关损伤感受器识别,激活相应的修复通路进行DNA修复。越来越多的证据表明DNA甲基化状态、蛋白翻译后修饰、染色质重塑、miRNA等修饰方式参与了DNA的损伤修复。文章通过不同损伤修复通路中这些修饰的特点,阐述表观遗传学改变在DNA损伤修复发展过程中的作用机制。  相似文献   

13.
The objective of this work was to evaluate the effects of selenomethionine (SeMet) on the induction, repair, and persistence of DNA damage in human leukocytes challenged with bleomycin (BLM). Comet assay was used to determine DNA strand breaks and hOGG1 for the specific recognition of oxidative damage. Leukocytes were (A) stimulated with phytohemagglutinin, (B) damaged with BLM, and (C) incubated to allow DNA repair. Comet assay was performed after each phase. SeMet (50 μM) was supplemented either during phase A, B, or C, or AB, or ABC. Treatment with SeMet decreased BLM-induced stand breaks when added during phase AB. Results obtained after the repair period indicate that SeMet favors repair of DNA damage especially when applied during phase AB. The comparison between DNA damage before and after repair showed that BLM-induced damage was repaired better in the presence of SeMet. Our results showed antigenotoxic effect of SeMet on BLM-induced DNA and also on repair and persistence of this damage when applied before and simultaneously with BLM.  相似文献   

14.
The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G1 and in G2 phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase δ, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins.  相似文献   

15.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

16.
Replication protein A (RPA) is a heterotrimeric protein complex required for a large number of DNA metabolic processes, including DNA replication and repair. An alternative form of RPA (aRPA) has been described in which the RPA2 subunit (the 32-kDa subunit of RPA and product of the RPA2 gene) of canonical RPA is replaced by a homologous subunit, RPA4. The normal function of aRPA is not known; however, previous studies have shown that it does not support DNA replication in vitro or S-phase progression in vivo. In this work, we show that the RPA4 gene is expressed in normal human tissues and that its expression is decreased in cancerous tissues. To determine whether aRPA plays a role in cellular physiology, we investigated its role in DNA repair. aRPA interacted with both Rad52 and Rad51 and stimulated Rad51 strand exchange. We also showed that, by using a reconstituted reaction, aRPA can support the dual incision/excision reaction of nucleotide excision repair. aRPA is less efficient in nucleotide excision repair than canonical RPA, showing reduced interactions with the repair factor XPA and no stimulation of XPF-ERCC1 endonuclease activity. In contrast, aRPA exhibits higher affinity for damaged DNA than canonical RPA, which may explain its ability to substitute for RPA in the excision step of nucleotide excision repair. Our findings provide the first direct evidence for the function of aRPA in human DNA metabolism and support a model for aRPA functioning in chromosome maintenance functions in nonproliferating cells.  相似文献   

17.
Repair of DNA double strand breaks (DSBs) is critical for the maintenance of genome integrity. DNA DSBs can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). Whilst HR requires sequences homologous to thedamaged DNA template in order to facilitate repair, NHEJ occurs through recognition of DNA DSBs by a variety of proteins that process and rejoin DNA termini by direct ligation. Here we review two recent reports that NHEJ is conserved in the social amoebaDictyostelium discoideum. Certain components of the mammalian NHEJ pathway that are absent in genetically tractable organisms such as yeast are present in Dictyostelium and we discuss potential directions for future research, in addition to considering this organism as a genetic model system for the study of NHEJ in vivo.  相似文献   

18.
19.
Methods for studying breaks in DNA strands and their repair, originally developed for prokaryotes and cultured cell lines, have been applied to preparations from rat brain. The relative sensitivities of these methods, which include alkaline sucrose density gradient sedimentation, nucleoid sedimentation, and ADP-ribosyltransferase assay, are compared.  相似文献   

20.
M. A. McAlear  K. M. Tuffo    C. Holm 《Genetics》1996,142(1):65-78
We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号