首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AimsOVE26 mice (FVB background), genetically overexpressing calmodulin in pancreatic beta cells, develop early onset type 1 diabetes, leading to progressive diabetic nephropathy (DN), with features of established human DN. The role of gender in characteristics of renal lesions has remained unexplored.MethodsMale and female OVE26 mice were compared to age and sex matched wild-type, nondiabetic FVB mice at ages of 4, 12, 24 and 36 weeks. Nephropathy was examined by measuring urine albumin-to-creatinine ratio, histopathology, expression of pathological markers and immunochemistry in the same cohort of mice.ResultsProgression of diabetic kidney disease was evident first in the OVE26 glomerulus, initially as mesangial matrix expansion at 4 weeks followed by loss of podocytes, glomerular volume expansion and severe albuminuria at 12 weeks. Tubule dilation and initiation of interstitial fibrosis did not become significant until 24 weeks. T-lymphocyte infiltration into the renal parenchyma appeared at 36 weeks. OVE26 female mice developed more advanced DN than male OVE26 mice, such as more severe albuminuria, greater podocyte loss, additional fibrosis and significantly more inflammatory cell infiltration. The female OVE26 mice had lowest level of plasma estradiol in all 36 weeks old mice, as well as renal estrogen receptors.ConclusionsThis demonstration of the role of gender, combined with the detailed characterization of DN progression illustrates the value of OVE26 mice for understanding gender effects on DN and provides the basis for researchers to better select the age and sex of OVE26 mice in future studies of type 1 DN.Research in contextWhat is already known about this subject?
  • •OVE26 mice, genetically overexpressing calmodulin in pancreatic beta cells, develop early onset type 1 diabetes.
  • •OVE26 mice are a widely used and valuable rodent model which develop severe, progressive diabetic nephropathy, with features of established human diabetic nephropathy.
What is the key question?
  • •Does gender play a role in determining characteristics of renal lesions and severity of nephropathy?
What are the new findings?
  • •Female OVE26 mice had more severe albuminuria, greater podocyte loss.
  • •Female OVE26 mice had additional fibrosis and significantly more inflammatory cell infiltration.
  • •Diabetes induced reductions in estradiol levels and renal estrogen receptors may be responsible for the female sensitization to DN in OVE26 mice.
How might this impact on clinical practice in the foreseeable future?
  • •Our findings provide the basis for researchers to better select the age and sex of OVE26 mice in future studies of type 1 DN.
  相似文献   

2.
miR-222 participates in many cardiovascular diseases, but its effect on cardiac remodeling induced by diabetes is unclear. This study evaluated the functional role of miR-222 in cardiac fibrosis in diabetic mice. Streptozotocin (STZ) was used to establish a type 1 diabetic mouse model. After 10 weeks of STZ injection, mice were intravenously injected with Ad-miR-222 to induce the overexpression of miR-222. miR-222 overexpression reduced cardiac fibrosis and improved cardiac function in diabetic mice. Mechanistically, miR-222 inhibited the endothelium to mesenchymal transition (EndMT) in diabetic mouse hearts. Mouse heart fibroblasts and endothelial cells were isolated and cultured with high glucose (HG). An miR-222 mimic did not affect HG-induced fibroblast activation and function but did suppress the HG-induced EndMT process. The antagonism of miR-222 by antagomir inhibited HG-induced EndMT. miR-222 regulated the promoter region of β-catenin, thus negatively regulating the Wnt/β-catenin pathway, which was confirmed by β-catenin siRNA. Taken together, our results indicated that miR-222 inhibited cardiac fibrosis in diabetic mice via negatively regulating Wnt/β-catenin-mediated EndMT.  相似文献   

3.
Currently available rodent models exhibit characteristics of early diabetic nephropathy (DN) such as hyperfiltration, mesangial expansion, and albuminuria yet features of late DN (hypertension, GFR decline, tubulointerstitial fibrosis) are absent or require a significant time investment for full phenotype development. Accordingly, the aim of the present study was to develop a mouse model of advanced DN with hypertension superimposed (HD mice). Mice transgenic for human renin cDNA under the control of the transthyretin promoter (TTRhRen) were employed as a model of angiotensin-dependent hypertension. Diabetes was induced in TTRhRen mice through low dose streptozotocin (HD-STZ mice) or by intercrossing with OVE26 diabetic mice (HD-OVE mice). Both HD-STZ and HD-OVE mice displayed more pronounced increases in urinary albumin levels as compared with their diabetic littermates. Additionally, HD mice displayed renal hypertrophy, advanced glomerular scarring and evidence of tubulointerstitial fibrosis. Both HD-OVE and HD-STZ mice showed evidence of GFR decline as FITC-inulin clearance was decreased compared to hyperfiltering STZ and OVE mice. Taken together our results suggest that HD mice represent a robust model of type I DN that recapitulates key features of human disease which may be significant in studying the pathogenesis of DN and in the assessment of putative therapeutics.  相似文献   

4.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

5.
6.
To detect the changes in the liver function in both male and female OVE26 mice from young to adults for better understanding of type 1 diabetes‐induced hepatic changes, OVE26 mice and wild‐type FVB mice were raised in the same environment without any intervention, and then killed at 4, 12, 24 and 36 weeks for examining liver's general properties, including pathogenic and molecular changes. The influence of diabetes on the bodyweight of male and female mice was different. Both male and female OVE26 mice did not obtain serious liver injury or non‐alcoholic fatty liver disease, manifested by mild elevation of plasma alanine transaminase, and less liver lipid content along with significantly suppressed lipid synthesis. Uncontrolled diabetes also did not cause hepatic glycogen accumulation in OVE26 mice after 4 weeks. Oxidative stress test showed no change in lipid peroxidation, but increased protein oxidation. Changed endoplasmic reticulum stress and apoptosis along with increased antioxidant capacity was observed in OVE26 mice. In conclusion, uncontrolled type 1 diabetes did not cause hepatic lipid deposition most likely because of reduced lipids synthesis in response to insulin deficiency. Enhanced antioxidant capacity might not only prevent the occurrence of severe acute liver injury but also the self‐renewal, leading to liver dysfunction.  相似文献   

7.
Diabetes is known to result in depression of myocardial function, whereas hearts from insulin-treated diabetic rats exhibit functional characteristics similar to controls. In the present study, we have studied the effect of insulin perfusion on cardiac performance of 3-day and 6-week streptozotocin (STZ) diabetic rats. Three days of diabetes did not result in depressed cardiac performance when the hearts were isolated and perfused in the working heart mode. Increasing the concentration of glucose from 5 to 10 mM in the perfusion fluid did not alter the function in either control or in diabetic rat hearts. However, when regular insulin or glucagon-free insulin (Humulin) (5 mU/mL) was included in the perfusion medium, the ventricular function of hearts from control rats was significantly enhanced, while diabetic myocardial function remained unaffected. When the study was repeated on hearts from 6-week diabetic animals, cardiac function of diabetic rats was significantly depressed as compared with controls. As in the 3-day study, contractility was not affected in either group by increasing glucose concentration in the perfusion medium. Again, inclusion of insulin in the medium enhanced cardiac contractility only in control hearts. These results suggest that diabetes results in a loss of myocardial sensitivity to insulin which seems to occur as early as 3 days after induction of diabetes with STZ. The study also demonstrates that the beneficial effects of in vivo insulin treatment on myocardial alterations induced by diabetes are not due to its direct myocardial effects.  相似文献   

8.
9.
Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1−/− mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.  相似文献   

10.
As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.  相似文献   

11.
Both hyperglycemia and hyperlipidemia have been postulated to increase atherosclerosis in patients with diabetes mellitus. To study the effects of diabetes on lipoprotein profiles and atherosclerosis in a rodent model, we crossed mice that express human apolipoprotein B (HuB), mice that have a heterozygous deletion of lipoprotein lipase (LPL1), and transgenic mice expressing human cholesteryl ester transfer protein (CETP). Lipoprotein profiles due to each genetic modification were assessed while mice were consuming a Western type diet. Fast-protein liquid chromatography analysis of plasma samples showed that HuB/LPL1 mice had increased VLDL triglyceride, and HuB/LPL1/CETP mice had decreased HDL and increased VLDL and IDL/LDL. All strains of mice were made diabetic using streptozotocin (STZ); diabetes did not alter lipid profiles or atherosclerosis in HuB or HuB/LPL1/CETP mice. In contrast, STZ-treated HuB/LPL1 mice were more diabetic, severely hyperlipidemic due to increased cholesterol and triglyceride in VLDL and IDL/LDL, and had more atherosclerosis.  相似文献   

12.
目的利用小鼠糖尿病模型,探讨母体糖尿病环境对早期胚胎基因表达的影响。方法ICR雌性小鼠腹腔注射150mg/kg剂量STZ诱发糖尿病,与正常雄鼠交配受孕,取14d胎龄的胚胎,提取胚胎的总RNA。将Cy3和Cy52种荧光分别标记到实验组和对照组的RNA上,制成RNA探针,并与包含24859个基因的表达谱芯片进行杂交及扫描,重复3次实验,采用Agilent扫描仪进行扫描软件读取数据。结果筛选出差异表达基因397个,其中有328个基因在实验组表达量比对照组大2倍,69个基因在实验组表达量比对照组小2倍。结论母体糖尿病环境能影响早期胎儿的基因表达,通过上调代谢相关基因和下调发育相关基因影响小鼠胚胎的早期发育。为深入探讨糖尿病胚胎病理和代谢疾病的分子机理提供了基本数据和研究的方向。  相似文献   

13.
A conducted vasomotor response (CVR) is characterized by the spread of vasoconstriction or vasodilatation both up- and downstream from a local stimulation site in the microcirculation. It is believed to coordinate vasomotor responses within the microcirculation, and to contribute to the control of the major feed arteries to a given organ or tissue. Microvascular disease is a common and severe complication in diabetes, and we therefore studied CVR in streptozotocin (STZ) diabetic mice to examine whether changes in CVR might have a role in the pathophysiology of microvascular dysfunction in diabetes. The mouse cremasteric arterioles were stimulated locally with KCl and the resulting local response as well as conducted responses at 500 mum and 1000 mum were measured in control and STZ treated mice. Diabetes (n=8) induced by intraperitoneal injection of STZ in a dose of 100 mg/kg (mean blood glucose 16.8+/-2.1 mmol/l) decreased the conduction of vasoconstriction from 27.3+/-1.1% to 21.4+/-1.6% at 500 mum (p<0.01) and from 17.4+/-1.0% to 9.8+/-1.1% at 1000 mum (p<0.01) as compared with control (n=9). Treatment with either the protein kinase C beta II inhibitor (LY341684) or the oxygen radical scavenger tempol, did not improve the decreased conduction of vasoconstriction, but when administered together, the conduction of vasoconstriction was improved from 21.4+/-1.6% to 26.5+/-0.8% at 500 mum and 9.8+/-1.1% to 16.5+/-0.7% at 1000 mum (p<0.01). We conclude that STZ induced diabetes reduces conducted vasoconstriction to KCl in mouse cremasteric arterioles, and combined treatment with both an oxygen radical scavenger and a protein kinase C beta II inhibitor improves the reduced conducted vasoconstriction.  相似文献   

14.
Ezquer F  Ezquer M  Simon V  Conget P 《PloS one》2011,6(1):e16566
Type 1 diabetes mellitus (T1D) is due to autoimmune destruction of pancreatic beta-cells. Previously, we have shown that intravenously administered bone marrow-derived multipotent mesenchymal stromal cells (MSCs) allows pancreatic islet recovery, improves insulin secretion and reverts hyperglycemia in low doses streptozotocin (STZ)-induced diabetic mice. Here we evaluate whether insulin prophylaxis and the administration of a second dose of cells affect the antidiabetic therapeutic effect of MSC transplantation. Insulitis and subsequent elimination of pancreatic beta-cells was promoted in C57BL/6 mice by the injection of 40 mg/kg/day STZ for five days. Twenty-four days later, diabetic mice were distributed into experimental groups according to if they received or not insulin and/or one or two doses of healthy donor-derived MSCs. Three and half months later: glycemia, pancreatic islets number, insulinemia, glycated hemoglobin level and glucose tolerance were determined in animals that did not received exogenous insulin for the last 1.5 months. Also, we characterized MSCs isolated from mice healthy or diabetic. The therapeutic effect of MSC transplantation was observed in diabetic mice that received or not insulin prophylaxis. Improvements were similar irrespective if they received one or two doses of cells. Compared to MSCs from healthy mice, MSCs from diabetic mice had the same proliferation and adipogenic potentials, but were less abundant, with altered immunophenotype and no osteogenic potential.Our preclinical results should be taken into account when designing phase II clinical trials aimed to evaluate MSC transplantation in patients with T1D. Cells should be isolated form healthy donor, insulin prophylaxis could be maintained and a second dose, after an elapse of two months, appears unnecessary in the medium-term.  相似文献   

15.
Chen HC  Chen CA  Guh JY  Chang JM  Shin SJ  Lai YH 《Life sciences》2000,67(19):2345-2353
The adhesion molecule integrin alpha3beta1 is the major receptor of podocyte to the glomerular capillary basement membrane (GBM). Since progressive alteration of the glomerular extracellular matrix (ECM) compartment leading to GBM thickening is common in diabetic nephropathy, we investigated the cellular distribution of alpha3beta1 integrin in podocytes of patients with diabetic nephropathy and streptozotocin-induced diabetic rats, and we evaluated the effects of high glucose on the cultured rat podocytes. Both human and rat kidneys were stained using the immunoelectron microscopy and immunoperoxidase technique with mouse monoclonal antibodies to human integrin alpha3 subunit. The results showed that both the number of immunogold particles and the staining of integrin alpha3 subunit on podocytes were weaker in patients with diabetic nephropathy than those of control kidneys. The staining of alpha3 on podocytes in the poorly-controlled diabetic rats was also weaker after one and three months of hyperglycemia. However, the staining was identical to controls in rats with only one week of hyperglycemia. High glucose (25 mM) but not streptozotocin in vitro suppressed the alpha3 expression of cultured rat podocytes. Our results demonstrated that the expression of integrin alpha3beta1 on podocytes was suppressed in both human and rats with diabetes, possibly due to the effects of hyperglycemia, and the suppression became more severe with the duration of diabetes.  相似文献   

16.
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post‐MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN‐induced angiogenesis in post‐MI model of diabetes. Wild‐type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus‐apelin (Ad‐APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad‐APLN treatment resulted in up‐regulation of Sirt3, angiopoietins/Tie‐2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT‐STZ+MI mice, but these alterations were not observed in Sirt3KO‐STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up‐regulation of Sirt3 pathway.  相似文献   

17.
This study characterized the cardiac contractile function and IGF-I response in a transgenic diabetic mouse model. Mechanical properties were evaluated in cardiac myocytes from OVE26 diabetic and FVB wild-type mice, including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)) and maximal velocity of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) was evaluated as Ca(2+)-induced Ca(2+) release [difference in fura 2 fluorescent intensity (Delta FFI)] and fluorescence decay rate (tau). Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, phospholamban (PLB), Na(+)-Ca(2+) exchanger (NCX), GLUT4, and the serine-threonine kinase Akt were assessed by Western blot. RhoA and IGF-I/IGF-I receptor mRNA levels were determined by RT-PCR and Northern blot. OVE26 myocytes displayed decreased PS, +/-dL/dt, and Delta FFI associated with prolonged TPS, TR(90), and tau. SERCA2a, NCX, and Akt activation were reduced, whereas PLB and RhoA were enhanced in OVE26 hearts. GLUT4 was unchanged. IGF-I enhanced PS and Delta FFI in FVB but not OVE26 myocytes. IGF-I mRNA was increased, but IGF-I receptor mRNA was reduced in OVE26 hearts and livers. These results validate diabetic cardiomyopathy in OVE26 mice due to reduced SERCA2, NCX, IGF-I response, and Akt activation associated with enhanced RhoA level, suggesting a therapeutic potential for Akt and RhoA.  相似文献   

18.
《Autophagy》2013,9(10):1254-1255
We have recently shown that in diabetic OVE26 mice (type I diabetes), the AMP-activated protein kinase (AMPK) is reduced along with cardiac dysfunction and decreased cardiac autophagy. Genetic inhibition of AMPK in cardiomyocytes attenuates cardiac autophagy, exacerbates cardiac dysfunction and increases mortality in diabetic mice. More importantly, we have found chronic AMPK activation with metformin, one of the most used antidiabetes drugs and a well-characterized AMPK activator, significantly enhances autophagic activity, preserves cardiac function and prevents most of the primary characteristics of diabetic cardiomyopathy in OVE26 mice, but not in dominant negative-AMPK diabetic mice. We conclude that AMPK activation protects cardiac structure and function by increasing cardiac autophagy in the diabetic heart.  相似文献   

19.
Type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta-cells during islet inflammation, which involves inflammatory cytokines and free radicals. However, mechanisms for protecting beta-cells from destruction have not been clarified. In this study, we define the role of SOCS3 on beta-cell destruction using beta-cell-specific SOCS3-conditional knockout (cKO) mice. The beta-cell-specific SOCS3-deficient mice were resistant to the development of diabetes caused by streptozotocin (STZ), a genotoxic methylating agent, which has been used to trigger beta-cell destruction. The islets from cKO mice demonstrated hyperactivation of STAT3 and higher induction of Bcl-xL than did islets from WT mice, and SOCS3-deficient beta-cells were more resistant to apoptosis induced by STZ in vitro than were WT beta-cells. These results suggest that enhanced STAT3 signaling protects beta-cells from destruction induced by a genotoxic stress and that STAT3/SOCS3 can be a potential therapeutic target for the treatment of type 1 diabetes.  相似文献   

20.
Xie Z  He C  Zou MH 《Autophagy》2011,7(10):1254-1255
We have recently shown that in diabetic OVE26 mice (type I diabetes), the AMP-activated protein kinase (AMPK) is reduced along with cardiac dysfunction and decreased cardiac autophagy. Genetic inhibition of AMPK in cardiomyocytes attenuates cardiac autophagy, exacerbates cardiac dysfunction and increases mortality in diabetic mice. More importantly, we have found chronic AMPK activation with metformin, one of the most used antidiabetes drugs and a well-characterized AMPK activator, significantly enhances autophagic activity, preserves cardiac function and prevents most of the primary characteristics of diabetic cardiomyopathy in OVE26 mice, but not in dominant negative-AMPK diabetic mice. We conclude that AMPK activation protects cardiac structure and function by increasing cardiac autophagy in the diabetic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号