首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.  相似文献   

3.
Culture-independent (PCR with Crenarchaeota-specific primers and subsequent denaturing gradient gel electrophoresis) and culture-dependent approaches were used to study the diversity of Crenarchaeota in terrestrial hot springs of the Kamchatka Peninsula and the Lake Baikal region (Russia) and of Iceland. Among the phylotypes detected there were relatives of both cultured (mainly hyperthermophilic) and uncultured Crenarchaeota. It was found that there is a large and diverse group of uncultured Crenarchaeota that inhabit terrestrial hot springs with moderate temperatures (55 to 70°C). Two of the lineages of this group were given phenotypic characterization, one as a result of cultivation in an enrichment culture and another one after isolation of a pure culture, “Fervidococcus fontis,” which proved to be a moderately thermophilic, neutrophilic (optimum pH of 6.0 to 7.5), anaerobic organotroph.  相似文献   

4.
A novel thermoacidophilic archaeal strain has been isolated from three geothermal acidic hot springs in Copahue, Argentina. One of the most striking characteristic of ALE1 isolate is its metabolic versatility. It grows on sulphur, tetrathionate, iron (II) and sucrose under aerobic conditions, but it can also develop under anaerobic conditions using iron (III) or sulphur as electron acceptors and sulphur or hydrogen as electron donors autotrophically. A temperature of 75 °C and a pH between 2.5 and 3.0 are strain ALE1 optimal growth conditions, but it is able to oxidise iron (II) even at pH 1.0. Cells are irregular cocci surrounded by a regularly arrayed glycoprotein layer (S-layer). Phylogenetic analysis shows that strain ALE1 belongs to the family Sulfolobaceae in the class Thermoprotei, within the phylum Crenarchaeota. Based on 16S rRNA gene sequence similarity on NCBI database, ALE1 does not have closely related relatives, neither in culture nor uncultured, which is more surprising. Its closest related species are strains of Acidianus hospitalis (91 % of sequence similarity), Acidianus infernus (90 %), Acidianus ambivalens (90 %) and Acidianus manzanensis (90 %). Its DNA base composition of 34.5 %?mol C?+?G is higher than that reported for other Acidianus species. Considering physiological and phylogenetic characteristics of strain ALE1, we considered it to represent a novel species of the genus Acidianus (candidatusAcidianus copahuensis”). The aim of this study is to physiologically characterise this novel archaea in order to understand its role in iron and sulphur geochemical cycles in the Copahue geothermal area and to evaluate its potential applications in bioleaching and biooxidation.  相似文献   

5.
Acid resistance of Mycobacterium paratuberculosis was examined as a function of growth conditions (i.e., in vitro growth medium and pH). M. paratuberculosis was cultured in either fatty acid-containing medium (7H9-OADC) or glycerol-containing medium (WR-GD or 7H9-GD) at two culture pHs (pHs 6.0 and 6.8). Organisms produced in these six medium and pH conditions were then tested for resistance to acetate buffer at pHs 3, 4, 5, and 6 at 20°C. A radiometric culture method (BACTEC) was used to quantify viable M. paratuberculosis cell data at various acid exposure times, and D values (decimal reduction times, or the times required to kill a 1-log10 concentration of bacteria) were determined. Soluble proteins of M. paratuberculosis grown under all six conditions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to identify proteins that may be associated with acid resistance or susceptibility. The culture medium affected growth rate and morphology: thin floating sheets of cells were observed in 7H9-OADC versus confluent, thick, waxy, and wrinkled pellicles in WR-GD. Culture medium pH affected growth rate (which was highest at pH 6.0), but it had little or no effect on D values for M. paratuberculosis at any test pH. When grown in 7H9-OADC, M. paratuberculosis was more acid resistant at all test pHs (higher D values) than when grown in WR-GD. Glycerol appeared to be the culture medium component most responsible for lower levels of M. paratuberculosis acid resistance. When glycerol was substituted for OADC in the 7H9 medium, D values were significantly lower than those of 7H9-OADC-grown M. paratuberculosis and were approximately the same as those for M. paratuberculosis grown in WR-GD medium. Comparison of the SDS-PAGE protein profiles for M. paratuberculosis cultures grown in 7H9-OADC, WR-GD, or 7H9-GD medium revealed that increased expression of 34.2- and 14.0-kDa proteins was associated with higher levels of acid resistance of M. paratuberculosis grown in 7H9-OADC medium and that 56.6- and 41.3-kDa proteins were associated with lower levels of acid resistance. This is the first report showing that in vitro culture conditions significantly affect growth characteristics, acid resistance, and protein expression of M. paratuberculosis, and the results emphasize the importance of culture conditions for in vitro susceptibility studies.  相似文献   

6.
Filamentous oleaginous microalgae Tribonema minus have advantages in relatively easy harvesting and grazers resistance in mass cultivation due to its filaments in previous study. To evaluate whether the genus Tribonema is a valuable candidate for use in biofuel production, the morphology, growth, biochemical composition and fatty acid profile of six filamentous microalgae strains Tribonema sp. were investigated. All the strains are unbranched filament in single row of elongated cylinder, attaining 0.5–3 mm in length. The growth rates of tested strains were 0.35–0.42 g L?1 d?1. Generally, for all strains, decrease in protein content was followed by a slight increase in lipid and significant increase in carbohydrate in early phase, afterwards, lipid increased constantly inversely to decrease in carbohydrate content. After 15-day cultivation, total lipid contents of tested strains ranged from 38–61 %, of which TAG were the majority and palmitic acid (C16:0) and palmitoleic acid (C16:1) were the dominant components. The study confirmed that the genus Tribonema is the potential for biodiesel and bioethanol production upon culture time.  相似文献   

7.
Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.  相似文献   

8.
9.
Diversity among Rhizobia Effective with Robinia pseudoacacia L.   总被引:3,自引:1,他引:2       下载免费PDF全文
The diversity of rhizobia that form symbioses with roots of black locust (Robinia pseudoacacia L.), an economically important leguminous tree species, was examined by inoculating seedling root zones with samples of soil collected from the United States, Canada, and China. Bacteria were isolated from nodules, subcultured, and verified to be rhizobia. The 186 isolates varied significantly in their resistance to antibiotics and NaCl, their growth on different carbohydrates, and their effect on the pH of culture media. Most isolates showed intermediate antibiotic resistance, the capacity to use numerous carbohydrates, and a neutral to acid pH response. Isolates had greater similarity within sampling locations than among sampling locations. The isolates were grouped by using numerical taxonomy techniques, and representative strains of 37 groups were selected. The mean generation times of these isolates ranged from 3 to 9 h, and the protein profile of each of the 37 isolates was unique. Nitrogen fixation, total nitrogen accumulation, and plant growth varied significantly among black locust seedlings inoculated with the representative isolates. We conclude that great variation exists among Rhizobium spp. that nodulate black locust, and selection of strains for efficiency of the symbiotic association appears possible.  相似文献   

10.
The aim of this study was to investigate some probiotic properties of 42 wild Lactobacillus plantarum strains isolated from different Italian foods of animal origin. The strains were first screened for their antibiotic resistance profile (chloramphenicol, erythromycin, gentamicin, and tetracycline), subsequently they were tested for their in vitro resistance to lysozyme (100 mg L?1), low pH (3.0, 2.5 and 2.0) and bile salts (0.3, 0.5 and 1.0 %). Moreover, agglutination property was studied (adhesion to Saccharomyces cerevisiae cells), as well as the presence of bsh and msa genes. The strains with the best characteristics were subjected to a further trial in order to evaluate their ability to survive to multiple stresses over time (lysozyme, low pH and bile salts) and the effect of these treatments on adhesion to yeast cells. All the strains were susceptible to chloramphenicol, erythromycin and gentamicin, while 6 strains were excluded from further evaluation because of their resistant phenotype against tetracycline. All the strains were able to grow in presence of lysozyme, as well as in MRS broth at pH 3.0. Only 4 strains showed a growth rate lower than 80 % when grown in MRS broth at pH 2.5, while a relevant growth rate decrease was observed after exposure to pH 2.0. Bile salts didn’t affect the viability of the L. plantarum cells. Twenty-one strains out of 33 tested strains were able to adhere to S. cerevisiae cells. Presence of both bsh and msa genes was detected in 6 strains. The strains resistant to all the stresses, positive to agglutination with S. cerevisiae and showing bsh and msa genes were selected for further evaluation and subjected to different stress treatments over time. The assessment of growth rates showed that exposure to lysozyme significantly increased low pH resistance in L. plantarum. This increase ranged from 2.35 to 15.57 %. The consequential lysozyme and low pH exposures didn’t affect the growth rate values after bile salts treatment, as well as the ability of the strains to adhere to yeast cells wasn’t modified by previous treatments (lysozyme, low pH and bile salts). The present work allows to increase knowledge about non starter lactic acid bacteria from Italian food products. The studied L. plantarum strains showed a good potential for their use as probiotic cultures. However, more in vivo tests are necessary to confirm this potentiality.  相似文献   

11.
Thermoacidophilic sulfate reduction, which remains a poorly studied process, was investigated in the present work. Radioisotope analysis with 35S-labeled sulfate was used to determine the rates of dissimilatory sulfate reduction in acidic thermal springs of Kamchatka, Russia. Sulfate reduction rates were found to vary from 0.054 to 12.9 nmol SO4/(cm3 day). The Oil Site spring (Uzon caldera, 60°C, pH 4.2) and Oreshek spring (Mutnovskii volcano, 91°C, pH 3.5) exhibited the highest activity of sulfate-reducing prokaryotes. Stable enrichment cultures reducing sulfate at pH and temperature values close to the environmental ones were obtained from these springs. Analysis of the 16S rRNA gene sequences revealed that a chemolithoautotrophic bacterium Thermodesulfobium sp. 3127-1 was responsible for sulfate reduction in the enrichment from the Oil Site spring. A chemoorganoheterotrophic archaeon Vulcanisaeta sp. 3102-1 (phylum Crenarchaeota) was identified in the enrichment from Oreshek spring. Thus, dissimilatory sulfate reduction under thermoacidophilic conditions was demonstrated and the agents responsible for this process were revealed.  相似文献   

12.

Background

The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown.

Methods and Principal Findings

TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 105-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5–6.0, but not at pH 6.5–8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5.

Conclusions

TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.  相似文献   

13.
The use of bacteriocin-producing lactic acid bacteria for improved food fermentation processes seems promising. However, lack of fundamental knowledge about the functionality of bacteriocin-producing strains under food fermentation conditions hampers their industrial use. Predictive microbiology or a mathematical estimation of microbial behavior in food ecosystems may help to overcome this problem. In this study, a combined model was developed that was able to estimate, from a given initial situation of temperature, pH, and nutrient availability, the growth and self-inhibition dynamics of a bacteriocin-producing Lactobacillus sakei CTC 494 culture in (modified) MRS broth. Moreover, the drop in pH induced by lactic acid production and the bacteriocin activity toward Listeria as an indicator organism were modeled. Self-inhibition was due to the depletion of nutrients as well as to the production of lactic acid. Lactic acid production resulted in a pH drop, an accumulation of toxic undissociated lactic acid molecules, and a shift in the dissociation degree of the growth-inhibiting buffer components. The model was validated experimentally.  相似文献   

14.
Survival of Rhizobium in Acid Soils   总被引:4,自引:4,他引:0       下载免费PDF全文
A Rhizobium strain nodulating cowpeas did not decline in abundance after it was added to sterile soils at pH 6.9 and 4.4, and the numbers fell slowly in nonsterile soils at pH 5.5 and 4.1. A strain of R. phaseoli grew when added to sterile soils at pH 6.7 and 6.9; it maintained large, stable populations in soils of pH 4.4, 5.5, and 6.0, but the numbers fell markedly and then reached a stable population size in sterile soils at pH 4.3 and 4.4. The abundance of R. phaseoli added to nonsterile soils with pH values of 4.3 to 6.7 decreased similarly with time regardless of soil acidity, and the final numbers were less than in the comparable sterile soils. The minimum pH values for the growth of strains of R. meliloti in liquid media ranged from 5.3 to 5.9. Two R. meliloti strains, which differed in acid tolerance for growth in culture, did not differ in numbers or decline when added to sterile soils at pH 4.8, 5.2, and 6.3. The population size of these two strains was reduced after they were introduced into nonsterile soils at pH 4.8, 5.4, and 6.4, and the number of survivors was related to the soil pH. The R. meliloti strain that was more acid sensitive in culture declined more readily in sterile soil at pH 4.6 than did the less sensitive strain, and only the former strain was eliminated from nonsterile soil at pH 4.8; however, the less sensitive strain also survived better in limed soil. The cell density of the two R. meliloti strains was increased in pH 6.4 soil in the presence of growing alfalfa. The decline and elimination of the tolerant, but not the sensitive, strain was delayed in soil at pH 4.6 by roots of growing alfalfa.  相似文献   

15.
16.
17.
In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.  相似文献   

18.
Lactococcus lactis subsp. lactis biovar diacetylactis CRL264 is a natural strain isolated from cheese (F. Sesma, D. Gardiol, A. P. de Ruiz Holgado, and D. de Mendoza, Appl. Environ. Microbiol. 56:2099-2103, 1990). The effect of citrate on the growth parameters at a very acidic pH value was studied with this strain and with derivatives whose citrate uptake capacity was genetically manipulated. The culture pH was maintained at 4.5 to prevent alkalinization of the medium, a well-known effect of citrate metabolism. In the presence of citrate, the maximum specific growth rate and the specific glucose consumption rate were stimulated. Moreover, a more efficient energy metabolism was revealed by analysis of the biomass yields relative to glucose consumption or ATP production. Thus, it was shown that the beneficial effect of citrate on growth under acid stress conditions is not primarily due to the concomitant alkalinization of the medium but stems from less expenditure of ATP, derived from glucose catabolism, to achieve pH homeostasis. After citrate depletion, a deleterious effect on the final biomass was apparent due to organic acid accumulation, particularly acetic acid. On the other hand, citrate metabolism endowed cells with extra ability to counteract lactic and acetic acid toxicity. In vivo 13C nuclear magnetic resonance provided strong evidence for the operation of a citrate/lactate exchanger. Interestingly, the greater capacity for citrate transport correlated positively with the final biomass and growth rates of the citrate-utilizing strains. We propose that increasing the citrate transport capacity of CRL264 could be a useful strategy to improve further the ability of this strain to cope with strongly acidic conditions.  相似文献   

19.
Many black meristematic fungi persist on rock surfaces—hostile and exposed habitats where high doses of radiation and periods of desiccation alternate with rain and temperature extremes. To cope with these extremes, rock-inhabiting black fungi show phenotypic plasticity and produce melanin as cell wall pigments. The rather slow growth rate seems to be an additional prerequisite to oligotrophic conditions. At least some of these fungi can undergo facultative, lichen-like associations with photoautotrophs. Certain genera presenting different lifestyles are phylogenetic related among the superclass Dothideomyceta. In this paper, we focus on the genus Lichenothelia, which includes border-line lichens, that is, associations of melanised fungi with algae without forming proper lichen thalli. We provide a first phylogenetic hypothesis to show that Lichenothelia belongs to the superclass Dothideomyceta. Further, culture experiments revealed the presence of co-occurring fungi in Lichenothelia thalli. These fungi are related to plant pathogenic fungi (Mycosphaerellaceae) and to other rock-inhabiting lineages (Teratosphaeriaceae). The Lichenothelia thallus-forming fungi represent therefore consortia of different black fungal strains. Our results suggest a common link between rock-inhabiting meristematic and lichen-forming lifestyles of ascomycetous fungi.  相似文献   

20.
Acidilobus saccharovorans is an anaerobic, organotrophic, thermoacidophilic crenarchaeon isolated from a terrestrial hot spring. We report the complete genome sequence of A. saccharovorans, which has permitted the prediction of genes for Embden-Meyerhof and Entner-Doudoroff pathways and genes associated with the oxidative tricarboxylic acid cycle. The electron transfer chain is branched with two sites of proton translocation and is linked to the reduction of elemental sulfur and thiosulfate. The genomic data suggest an important role of the order Acidilobales in thermoacidophilic ecosystems whereby its members can perform a complete oxidation of organic substrates, closing the anaerobic carbon cycle.Acidophilic microorganisms are widely dispersed in natural acidic environments, including volcanic hot springs, and are, in the majority, aerobes (14). However, such anoxic, high-temperature, acidic environments are inhabited by metabolically versatile anaerobic thermoacidophiles of the archaeal phylum Crenarchaeota. Lithoautotrophic thermoacidophiles oxidize molecular hydrogen in the course of elemental sulfur (S0) respiration. Organotrophs couple the oxidation of organic substrates to the reduction of S0 or thiosulfate. They all belong to the genus Acidilobus in the family Acidilobaceae and to the genus Caldisphaera in the family Caldisphaeraceae (4, 13, 22, 24). Acidilobaceae and Caldisphaeraceae form the crenarchaeal order Acidilobales (24). Acidilobus saccharovorans was isolated from an acidic hot spring of Uzon Caldera, Kamchatka, Russia (24). It is an obligately anaerobic acidophile with a range of growth from pH 2.5 to 5.8 (optimum at pH 3.5 to 4) and a temperature range from 60 to 90°C (optimum at 80 to 85°C). It utilizes a wide range of proteinaceous and carbohydrate substrates and cannot grow lithoautotrophically on H2 and CO2 (24). S0 and thiosulfate stimulate growth and are reduced to H2S. Protons cannot serve as electron acceptors, since no H2 is produced during growth in the absence of S0 (24). Genomic sequences of aerobic, thermoacidophilic euryarchaea Thermoplasma acidophilum (26) and Picrophilus torridus (8) give an insight into the thermoacidophilic survival strategy. However, no genomes of obligately anaerobic, thermoacidophilic archaea were available until now. Here we present the genome of A. saccharovorans and show that it encodes numerous hydrolytic enzymes and metabolic pathways necessary for the utilization and complete mineralization of organic substrates in its natural habitat, acidic hot springs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号