首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.  相似文献   

2.
The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic α-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2α and CReP, regulators of translation initiation.  相似文献   

3.
4.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2α), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2α kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2α kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA·Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2α.  相似文献   

5.
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.  相似文献   

6.
Sporozoites of the etiological agent of malaria, Plasmodium, form parasitophorous vacuoles (PVs) in hepatocytes. The PV membranes (PVM) are coated with a well-known host autophagy marker LC3 and parasite-derived protein called Upregulated in infective sporozoites 3 (UIS3), which has been shown to interact with LC3 and inhibit LC3-mediated autophagic disruption at the PV. Although uis3(−) sporozoites cannot proliferate in wild-type cells, they can replicate efficiently in cells defective in autophagy due to the lack of Atg proteins such as Atg3, Atg5 and Atg7, since these Atg proteins are essential for processing of LC3. However, it remains to be seen whether other Atg proteins participate in the restriction of uis3(−) parasite growth. Here we show that, despite essential roles of Atg9 and Atg14 in autophagy, both proteins are dispensable for the restriction of uis3(−) parasite growth. Moreover, we found that cells lacking LC3 proteins are also able to restrict uis3(−) parasite growth. In sharp contrast, GABARAPs, another subfamily of mammalian Atg8, participated in suppression of uis3(−) parasite growth. Taken together, contrary to a previous model in which UIS3 avoids host LC3- and autophagy-dependent parasite elimination program, our data demonstrate a role of GABARAPs for suppression of uis3(−) parasite growth in a manner independent on autophagy.  相似文献   

7.
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733–1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the α subunit of eukaryotic translation initiation factor 2 (eIF2α) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2α phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2α phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2α by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2α following PKR activation. The result is limited phosphorylation of eIF2α and continued translation of cellular and viral proteins.  相似文献   

8.
9.
10.
The eukaryotic cell responds to various forms of environmental stress by adjusting the rates of mRNA translation thus facilitating adaptation to the assaulting stress. One of the major pathways that control protein synthesis involves the phosphorylation of the α-subunit of eukaryotic initiation factor eIF2 at serine 51. Different forms of DNA damage were shown to induce eIF2α phosphorylation by using PERK, GCN2 or PKR. However, the specificity of the eIF2α kinases and the biological role of eIF2α phosphorylation pathway in the DNA damage response (DDR) induced by chemotherapeutics are not known. Herein, we show that PKR is the eIF2α kinase that responds to DDR induced by doxorubicin. We show that activation of PKR integrates two signaling pathways with opposing biological outcomes. More specifically, induction of eIF2α phosphorylation has a cytoprotective role, whereas activation of c-jun N-terminal kinase (JNK) by PKR promotes cell death in response to doxorubicin. We further show that the proapoptotic effects of JNK activation prevail over the cytoprotection mediated by eIF2α phosphorylation. These findings reveal that PKR can be an important inducer of cell death in response to chemotherapies through its ability to act independently of eIF2α phosphorylation.  相似文献   

11.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inducer of cancer cell death that holds promise in cancer therapy. Cancer cells are more susceptible than normal cells to the cell-death-inducing effects of TRAIL. However, a variety of cancer cells are resistant to TRAIL through complex mechanisms. Here, we investigate the effects of inhibition of eukaryotic initiation factor 2 subunit α (eIF2α) dephosphorylation on TRAIL-induced apoptosis in hepatoma cells. Treatment of hepatoma cells with salubrinal, an inhibitor of eIF2α dephosphorylation, enhances TRAIL-induced eIF2α phosphorylation, CCAAT/enhancer-binding protein homologous protein (CHOP) expression and caspase activation. Salubrinal enhances TRAIL-induced apoptosis, which could be abrogated by caspase inhibitor. Overexpression of phosphomimetic eIF2α (S51D) enhances TRAIL-induced CHOP expression, caspase 7 and PARP cleavage and apoptosis. By contrast, overexpression of phosphodeficient eIF2α (S51A) abrogates the stimulation of TRAIL-induced apoptosis by salubrinal. Moreover, knockdown of growth arrest and DNA damage-inducible protein 34 (GADD34), which recruits protein phosphatase 1 to dephosphorylate eIF2α, enhances TRAIL-induced eIF2α phosphorylation, CHOP expression, caspase activation and apoptosis. Furthermore, the sensitization of hepatoma cells to TRAIL by salubrinal is dependent on CHOP. Knockdown of CHOP abrogates the stimulation of TRAIL-induced caspase activation and apoptosis by salubrinal. Combination of salubrinal and TRAIL leads to increased expression of Bim, a CHOP-regulated proapoptotic protein. Bim knockdown blunts the stimulatory effect of salubrinal on TRAIL-induced apoptosis. Collectively, these findings suggest that inhibition of eIF2α dephosphorylation may lead to synthetic lethality in TRAIL-treated hepatoma cells.  相似文献   

12.
13.
Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson''s disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin''s action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.  相似文献   

14.
15.
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer’s disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2−/− and GCN2+/− deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2−/− and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.  相似文献   

16.
17.
The eukaryotic translation initiation factor 2 (eIF2) is central to the onset of protein synthesis and its modulation in response to physiological demands. eIF2, a heterotrimeric G-protein, is activated by guanine nucleotide exchange to deliver the initiator methionyl-tRNA to the ribosome. Here we report that assembly of the eIF2 complex in vivo depends on Cdc123, a cell proliferation protein conserved among eukaryotes. Mutations of CDC123 in budding yeast reduced the association of eIF2 subunits, diminished polysome levels, and increased GCN4 expression indicating that Cdc123 is critical for eIF2 activity. Cdc123 bound the unassembled eIF2γ subunit, but not the eIF2 complex, and the C-terminal domain III region of eIF2γ was both necessary and sufficient for Cdc123 binding. Alterations of the binding site revealed a strict correlation between Cdc123 binding, the biological function of eIF2γ, and its ability to assemble with eIF2α and eIF2β. Interestingly, high levels of Cdc123 neutralized the assembly defect and restored the biological function of an eIF2γ mutant. Moreover, the combined overexpression of eIF2 subunits rescued an otherwise inviable cdc123 deletion mutant. Thus, Cdc123 is a specific eIF2 assembly factor indispensable for the onset of protein synthesis. Human Cdc123 is encoded by a disease risk locus, and, therefore, eIF2 biogenesis control by Cdc123 may prove relevant for normal cell physiology and human health. This work identifies a novel step in the eukaryotic translation initiation pathway and assigns a biochemical function to a protein that is essential for growth and viability of eukaryotic cells.  相似文献   

18.
19.
Phosphorylation of histone H4 serine 47 (H4S47ph) is catalyzed by Pak2, a member of the p21-activated serine/threonine protein kinase (Pak) family and regulates the deposition of histone variant H3.3. However, the phosphatase(s) involved in the regulation of H4S47ph levels was unknown. Here, we show that three phosphatases (PP1α, PP1β and Wip1) regulate H4S47ph levels and H3.3 deposition. Depletion of each of the three phosphatases results in increased H4S47ph levels. Moreover, PP1α, PP1β and Wip1 bind H3-H4 in vitro and in vivo, whereas only PP1α and PP1β, but not Wip1, interact with Pak2 in vivo. These results suggest that PP1α, PP1β and Wip1 regulate the levels of H4S47ph through directly acting on H4S47ph, with PP1α and PP1β also likely regulating the activity of Pak2. Finally, depletion of PP1α, PP1β and Wip1 leads to increased H3.3 occupancy at candidate genes tested, elevated H3.3 deposition and enhanced association of H3.3 with its chaperones HIRA and Daxx. These results reveal a novel role of three phosphatases in chromatin dynamics in mammalian cells.  相似文献   

20.
Kirchner J  Gross S  Bennett D  Alphey L 《Genetics》2007,176(1):273-281
Protein serine/threonine phosphatase type 1 (PP1) has been found in all eukaryotes examined to date and is involved in the regulation of many cellular functions, including glycogen metabolism, muscle contraction, and mitosis. In Drosophila, four genes code for the catalytic subunit of PP1 (PP1c), three of which belong to the PP1α subtype. PP1β9C (flapwing) encodes the fourth PP1c gene and has a specific and nonredundant function as a nonmuscle myosin phosphatase. PP1α87B is the major form and contributes ~80% of the total PP1 activity. We describe the first mutant alleles of PP1α96A and show that PP1α96A is not an essential gene, but seems to have a function in the regulation of nonmuscle myosin. We show that overexpression of the PP1α isozymes does not rescue semilethal PP1β9C mutants, whereas overexpression of either PP1α96A or PP1β9C does rescue a lethal PP1α87B mutant combination, showing that the lethality is due to a quantitative reduction in the level of PP1c. Overexpression of PP1β9C does not rescue a PP1α87B, PP1α96A double mutant, suggesting an essential PP1α-specific function in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号