首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation at the ABO locus was one of the earliest sources of data in the study of human population identity and history, and to this day remains widely genotyped due to its importance in blood and tissue transfusions. Here, we look at ABO blood type variants in our archaic relatives: Neanderthals and Denisovans. Our goal is to understand the genetic landscape of the ABO gene in archaic humans, and how it relates to modern human ABO variation. We found two Neanderthal variants of the O allele in the Siberian Neanderthals (O1 and O2), one of these variants is shared with an European Neanderthal, who is a heterozygote for this O1 variant and a rare cis-AB variant. The Denisovan individual is heterozygous for two variants of the O1 allele, functionally similar to variants found widely in modern humans. Perhaps more surprisingly, the O2 allele variant found in Siberian Neanderthals can be found at low frequencies in modern Europeans and Southeast Asians, and the O1 allele variant found in Siberian and European Neanderthal is also found at very low frequency in modern East Asians. Our genetic distance analyses suggest both alleles survive in modern humans due to inbreeding with Neanderthals. We find that the sequence backgrounds of the surviving Neanderthal-like O alleles in modern humans retain a higher sequence divergence than other surviving Neanderthal genome fragments, supporting a view of balancing selection operating in the Neanderthal ABO alleles by retaining highly diverse haplotypes compared with portions of the genome evolving neutrally.  相似文献   

2.
Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions.  相似文献   

3.
The roles of fossil human populations in the origin of modern humans have been enigmatic. Earlier (archaic) human populations were biologically similar and were in recurrent temporal and geographic contact, making interbreeding between ancient populations likely. Regardless of the taxonomic status of these populations, adaptive alleles may have introgressed from archaic populations into modern humans. When an introgressed archaic allele has a selective advantage, even rare interbreeding can lead to its spread or fixation in later human populations. Several genetic loci are candidates for such introgression, including microcephalin, a gene influencing brain development. This example may suggest that the evolution of human cognition depended in part on the genetic legacy of archaic groups such as the Neanderthals.  相似文献   

4.
5.
Understanding local adaptation has become a key research area given the ongoing climate challenge and the concomitant requirement to conserve genetic resources. Perennial plants, such as forest trees, are good models to study local adaptation given their wide geographic distribution, largely outcrossing mating systems, and demographic histories. We evaluated signatures of local adaptation in European aspen (Populus tremula) across Europe by means of whole-genome resequencing of a collection of 411 individual trees. We dissected admixture patterns between aspen lineages and observed a strong genomic mosaicism in Scandinavian trees, evidencing different colonization trajectories into the peninsula from Russia, Central and Western Europe. As a consequence of the secondary contacts between populations after the last glacial maximum, we detected an adaptive introgression event in a genome region of ∼500 kb in chromosome 10, harboring a large-effect locus that has previously been shown to contribute to adaptation to the short growing seasons characteristic of Northern Scandinavia. Demographic simulations and ancestry inference suggest an Eastern origin—probably Russian—of the adaptive Nordic allele which nowadays is present in a homozygous state at the north of Scandinavia. The strength of introgression and positive selection signatures in this region is a unique feature in the genome. Furthermore, we detected signals of balancing selection, shared across regional populations, that highlight the importance of standing variation as a primary source of alleles that facilitate local adaptation. Our results, therefore, emphasize the importance of migration–selection balance underlying the genetic architecture of key adaptive quantitative traits.  相似文献   

6.
The genetic diversity of the casein locus in cattle was studied on the basis of haplotype analysis. Consideration of recently described genetic variants of the casein genes which to date have not been the subject of diversity studies, allowed the identification of new haplotypes. Genotyping of 30 cattle breeds from four continents revealed a geographically associated distribution of haplotypes, mainly defined by frequencies of alleles at CSN1S1 and CSN3. The genetic diversity within taurine breeds in Europe was found to decrease significantly from the south to the north and from the east to the west. Such geographic patterns of cattle genetic variation at the casein locus may be a result of the domestication process of modern cattle as well as geographically differentiated natural or artificial selection. The comparison of African Bos taurus and Bos indicus breeds allowed the identification of several Bos indicus specific haplotypes (CSN1S1*C-CSN2*A2-CSN3*AI/CSN3*H) that are not found in pure taurine breeds. The occurrence of such haplotypes in southern European breeds also suggests that an introgression of indicine genes into taurine breeds could have contributed to the distribution of the genetic variation observed.  相似文献   

7.
Ethnic populations of India as seen from an evolutionary perspective   总被引:5,自引:0,他引:5  
It is now widely accepted that (i) modern humans,Homo sapiens sapiens, evolved in Africa, (ii) migrated out of Africa and replaced archaic humans in other parts of the world, and (iii) one of the first waves of out-of-Africa migration came into India. India, therefore, served as a major corridor for dispersal of modern humans. By studying variation at DNA level in contemporary human populations of India, we have provided evidence that mitochondrial DNA haplotypes based on RFLPs are strikingly similar across ethnic groups of India, consistent with the hypothesis that a small number of females entered India during the initial process of the peopling of India. We have also provided evidence that there may have been dispersal of humans from India to southeast Asia. In conjunction with haplotype data, nucleotide sequence data of a hypervariable segment (HVS-1) of the mitochondrial genome indicate that the ancestors of the present austro-asiatic tribal populations may have been the most ancient inhabitants of India. Based on Y-chromosomal RFLP and STRP data, we have also been able to trace footprints of human movements from west and central Asia into India.  相似文献   

8.
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression—the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a “soft sweep,” which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.  相似文献   

9.
倪喜军 《人类学学报》2022,41(4):576-592
解剖结构上的现代人是指具有近圆球形头骨、短而平的面颅、纤细的骨骼等特征的区别于其他古老人类的化石和现今的人群。支持多地区演化模型和支持近期非洲起源模型的学者,在“解剖结构上的现代人”的应用范围方面是不同的,前者以连续演化为基本思想,认为这一名词只包括智人中较进步的类群;而后者以分支系统学思想为基础,认为包括所有智人。分子古生物学研究显示,尼人、丹人和智人在遗传学水平上属于不同的人种。新近的以标本-种群为单元的系统分析,因为不是以属、种等分类学阶元进行的,因此与分类学的阶元划分无关。该系统分析的结果显示智人属于单系类群,哈尔滨人、大荔人等组成其姊妹群。尼人与智人的分异早于1百万年,与基因组水平的谱系分析相符合。多次多向的穿梭扩散是统计学上符合系统关系的模型。  相似文献   

10.
Early pig farmers in Europe imported Asian pigs to cross with their local breeds in order to improve traits of commercial interest. Current genomics techniques enabled genome-wide identification of these Asian introgressed haplotypes in modern European pig breeds. We propose that the Asian variants are still present because they affect phenotypes that were important for ancient traditional, as well as recent, commercial pig breeding. Genome-wide introgression levels were only weakly correlated with gene content and recombination frequency. However, regions with an excess or absence of Asian haplotypes (AS) contained genes that were previously identified as phenotypically important such as FASN, ME1, and KIT. Therefore, the Asian alleles are thought to have an effect on phenotypes that were historically under selection. We aimed to estimate the effect of AS in introgressed regions in Large White pigs on the traits of backfat (BF) and litter size. The majority of regions we tested that retained Asian deoxyribonucleic acid (DNA) showed significantly increased BF from the Asian alleles. Our results suggest that the introgression in Large White pigs has been strongly determined by the selective pressure acting upon the introgressed AS. We therefore conclude that human-driven hybridization and selection contributed to the genomic architecture of these commercial pigs.  相似文献   

11.
The chicken major histocompatibility complex (MHC) is located on the microchromosome 16 and is described as the most variable region in the genome. The genes of the MHC play a central role in the immune system. Particularly, genes encoding proteins involved in the antigen presentation to T cells. Therefore, describing the genetic polymorphism of this region is crucial in understanding host–pathogen interactions. The tandem repeat LEI0258 is located within the core area of the B region of the chicken MHC (MHC-B region) and its genotypes correlate with serology. This marker was used to provide a picture of the worldwide diversity of the chicken MHC-B region and to categorize chicken MHC haplotypes. More than 1,600 animals from 80 different populations or lines of chickens from Africa, Asia, and Europe, including wild fowl species, were genotyped at the LEI0258 locus. Fifty novel alleles were described after sequencing. The resulting 79 alleles were classified into 12 clusters, based on the SNPs and indels found within the sequences flanking the repeats. Furthermore, hypotheses were formulated on the evolutionary dynamics of the region. This study constitutes the largest variability report for the chicken MHC and establishes a framework for future diversity or association studies.  相似文献   

12.
Recent analysis of DNA extracted from two Eurasian forms of archaic human shows that more genetic variants are shared with humans currently living in Eurasia than with anatomically modern humans in sub-Saharan Africa. Although these genome-wide average measures of genetic similarity are consistent with the hypothesis of archaic admixture in Eurasia, analyses of individual loci exhibiting the signal of archaic introgression are needed to test alternative hypotheses and investigate the admixture process. Here, we provide a detailed sequence analysis of the innate immune gene OAS1, a locus with a divergent Melanesian haplotype that is very similar to the Denisova sequence from the Altai region of Siberia. We resequenced a 7-kb region encompassing the OAS1 gene in 88 individuals from six Old World populations (San, Biaka, Mandenka, French Basque, Han Chinese, and Papua New Guineans) and discovered previously unknown and ancient genetic variation. The 5' region of this gene has unusual patterns of diversity, including 1) higher levels of nucleotide diversity in Papuans than in sub-Saharan Africans, 2) very deep ancestry with an estimated time to the most recent common ancestor of >3 myr, and 3) a basal branching pattern with Papuan individuals on either side of the rooted network. A global geographic survey of >1,500 individuals showed that the divergent Papuan haplotype is nearly restricted to populations from eastern Indonesia and Melanesia. Polymorphic sites within this haplotype are shared with the draft Denisova genome over a span of ~90 kb and are associated with an extended block of linkage disequilibrium, supporting the hypothesis that this haplotype introgressed from an archaic source that likely lived in Eurasia.  相似文献   

13.
Signals of archaic admixture have been identified through comparisons of the draft Neanderthal and Denisova genomes with those of living humans. Studies of individual loci contributing to these genome-wide average signals are required for characterization of the introgression process and investigation of whether archaic variants conferred an adaptive advantage to the ancestors of contemporary human populations. However, no definitive case of adaptive introgression has yet been described. Here we provide a DNA sequence analysis of the innate immune gene STAT2 and show that a haplotype carried by many Eurasians (but not sub-Saharan Africans) has a sequence that closely matches that of the Neanderthal STAT2. This haplotype, referred to as N, was discovered through a resequencing survey of the entire coding region of STAT2 in a global sample of 90 individuals. Analyses of publicly available complete genome sequence data show that haplotype N shares a recent common ancestor with the Neanderthal sequence (∼80 thousand years ago) and is found throughout Eurasia at an average frequency of ∼5%. Interestingly, N is found in Melanesian populations at ∼10-fold higher frequency (∼54%) than in Eurasian populations. A neutrality test that controls for demography rejects the hypothesis that a variant of N rose to high frequency in Melanesia by genetic drift alone. Although we are not able to pinpoint the precise target of positive selection, we identify nonsynonymous mutations in ERBB3, ESYT1, and STAT2—all of which are part of the same 250 kb introgressive haplotype—as good candidates.  相似文献   

14.
Toll-like receptor 2 (TLR2) plays an important role in the recognition of a variety of pathogenic microbes. In the present study, we compared polymorphisms of TLR2 locus in two closely related old world monkey species, rhesus monkey (Macaca mulatta) and Japanese monkey (Macaca fuscata). By nucleotide sequencing of the third exon of TLR2 gene from 21 to 35 respective individuals, we could assign 17 haplotype combinations of 17 coding SNPs of ten non-synonymous and seven synonymous substitutions. A non-synonymous substitution at codon position 326 appeared to be differentially fixed in each species, asparagine for M. mulatta whereas tyrosine for M. fuscata, and may contribute to certain functional properties because it locates in the region contributing to ligand binding and interaction with dimerization partner of TLR2-TLR1 heterodimeric complex. Although TLR2 alleles have diverged to similar extent in both species, they have evolved in significantly different ways; TLR2 of M. fuscata has undergone purifying selection while the membrane-proximal part of the extracellular domain of M. mulatta TLR2 exhibits higher rates of non-synonymous substitutions, indicating a trace of Darwinian positive selection.  相似文献   

15.
Wang CH  Eng HL  Lin KH  Chang CH  Hsieh CA  Lin YL  Lin TM 《PloS one》2011,6(10):e26235
Toll-like receptors (TLRs) play pivotal roles in the innate immune system and control inflammatory responses and adaptive immunity. We previously evaluated associations between TLR7 and TLR8 gene SNPs and susceptibility to hepatitis C virus (HCV) infection. Our results suggested that TLR7IVS2-151G and TLR8-129G alleles were present at higher frequency in males of an HCV-infected group as compared to a control group (24.1% vs. 14.4%, p = 0.028; 17.6% vs. 6.8%, p = 0.004, respectively). Based upon their recognition of single stranded viral RNA, this suggested that TLR7 and TLR8 played a significant role in anti-HCV immune responses. Here, we studied the functional effects of these polymorphisms by analyzing the mRNA expressions of TLR7 and TLR8 and cytokine production induced ex vivo by TLR7- and TLR8-specific agonists using whole blood of subjects with different genotypes. The percentage of CD14+ cells from those with an AG haplotype that expressed TLR7 and TLR8 was significantly lower, but higher in intensity compared to cells from those with GG and AC haplotypes. Cells from those with an AG haplotype produced more IFN-α and less amounts of pro-inflammatory cytokines upon stimulation. This suggests that variations in TLR7 and TLR8 genes might impair immune responses during HCV infection.  相似文献   

16.
While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize’s global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations.Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.  相似文献   

17.
Cioclovina (Romania): affinities of an early modern European   总被引:1,自引:0,他引:1  
  相似文献   

18.
The discovery of the key role of Toll-like receptors (TLRs) in initiating innate immune responses and modulating adaptive immunity has revolutionized our understanding of vertebrate defence against pathogens. Yet, despite their central role in pathogen recognition and defence initiation, there is little information on how variation in TLRs influences disease susceptibility in natural populations. Here, we assessed the extent of naturally occurring polymorphisms at TLR2 in wild bank voles (Myodes glareolus) and tested for associations between TLR2 variants and infection with Borrelia afzelii, a common tick-transmitted pathogen in rodents and one of the causative agents of human Lyme disease. Bank voles in our population had 15 different TLR2 haplotypes (10 different haplotypes at the amino acid level), which grouped in three well-separated clusters. In a large-scale capture–mark–recapture study, we show that voles carrying TLR2 haplotypes of one particular cluster (TLR2c2) were almost three times less likely to be Borrelia infected than animals carrying other haplotypes. Moreover, neutrality tests suggested that TLR2 has been under positive selection. This is, to our knowledge, the first demonstration of an association between TLR polymorphism and parasitism in wildlife, and a striking example that genetic variation at innate immune receptors can have a large impact on host resistance.  相似文献   

19.
The human RRM2P4 pseudogene has a pattern of nucleotide polymorphism that is unlike any locus published to date. A gene tree constructed from a 2.4-kb fragment of the RRM2P4 locus sequenced in a sample of 41 worldwide humans clearly roots in East Asia and has a most-recent common ancestor approximately 2 Myr before present. The presence of this basal lineage exclusively in Asia results in higher nucleotide diversity among non-Africans than among Africans. A global survey of a single-nucleotide polymorphism that is diagnostic for the basal, Asian lineage in 570 individuals shows that it occurs at frequencies up to 53% in south China, whereas only one of 177 surveyed Africans carries this archaic lineage. We suggest that this ancient lineage is a remnant of introgressive hybridization between expanding anatomically modern humans emerging from Africa and archaic populations in Eurasia.  相似文献   

20.
Increased longevity, expressed as the number of individuals surviving to older adulthood, represents a key way that Upper Paleolithic Europeans differ from earlier European (Neandertal) populations. Here, we address whether longevity increased as a result of cultural/adaptive change in Upper Paleolithic Europe, or whether it was introduced to Europe as a part of modern human biology. We compare the ratio of older to younger adults (OY ratio) in an early modern human sample associated with the Middle Paleolithic from Western Asia with OY ratios of European Upper Paleolithic moderns and penecontemporary Neandertals from the same region. We also compare these Neandertals to European Neandertals. The difference between the OY ratios of modern humans of the Middle and Upper Paleolithic is large and significant, but there is no significant difference between the Neandertals and early modern humans of Western Asia. Longevity for the West Asian Neandertals is significantly more common than for the European Neandertals. We conclude that the increase in adult survivorship associated with the Upper Paleolithic is not a biological attribute of modern humans, but reflects important cultural adaptations promoting the demographic and material representations of modernity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号