首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) and peroxynitrite (ONOO) are said to destroy norepinephrine (NE). We studied the role of NE decomposition by NO donors and ONOO as they affect the contractile activity of NE in rat denuded thoracic aorta. First, we determined the relaxing effect of NO donors (SNAP, PROLI/NO, Sodium nitrite, SIN-1) and ONOO after precontraction by NE (1 microM). SNAP and SIN-1 (EC(50) 50-110 nM) were more active than PROLI/NO, Sodium nitrite or ONOO (EC(50) 19-30 microM). The relaxing effect of NO donors and ONOO were decreased by ODQ (10 microM), a guanylate cyclase inhibitor. Second, we compared the contractile activity of NE before and after preincubation with NO donors or ONOO in presence of ODQ. NE (1 microM) was incubated with NO donors or ONOO at the concentrations of 0.1 mM in both Krebs solution or phosphate buffer (pH 7.4; 0.1 M) for 10 minutes at 37 degrees C. NE evoked the aorta contraction in the same concentrations before and after preincubation with NO donors. In contrast, ONOO decreased effect of NE, EC(50) was measured at 4.3+/-0.3 nM and 13.4+/-1.6 nM, before and after preincubation of NE with ONOO respectively. Third, we measured the NE concentration using the HPLC method. We revealed that the concentration of NE after preincubation with NO donors was unaltered. However HPLC measurement revealed that NE concentration after preincubation with ONOO was reduced 2-3-fold. Therefore, under these experimental conditions ONOO, but not NO donors, was capable of destroying NE.  相似文献   

2.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

3.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

4.
M Cudic  C Ducrocq 《Nitric oxide》2000,4(2):147-156
To investigate the protective effect of the anesthetic 2, 6-diisopropylphenol, or propofol, in oxidative processes in which (*)NO and peroxynitrite are involved, direct interactions were explored. The reactions of the highly lipophilic propofol with (*)NO in methanolic or aqueous buffered solutions under air were shown to produce the same compounds as those detected with peroxynitrite, but with very low yields and slow rates. In aqueous neutral medium, peroxynitrite (ONOO(-), ONOOCO(-)(2), ONOOH) was able to nitrate and oxidize propofol: In addition to oxidation products, quinone and quinone dimer, the formation of the 4-nitropropofol derivative was detected, increasing with peroxynitrite or CO(2) concentrations. Nitration reached 20% after the addition of 25 mM bicarbonate to an equimolecular mixture of peroxynitrite and propofol in methanol/phosphate-buffered solution (1/4,v/v) at pH 7.4. However, peroxynitrite either in methanol or in alkaline-buffered mixture (optimum pH 10-12) resulted in the rapid and almost complete transformation of propofol to an intermediate compound 1, which further decomposed to 4-nitrosopropofol. The transient compound 1 was obtained from either peroxynitrite or (*)NO in the presence of oxygen. From mass spectrometry determination of compound 1 we propose the involvement of the nitrosodioxyl radical ONOO(*), forming an adduct with the propofoxyl radical, to yield 4-nitrosodioxypropofol and finally 4-nitrosopropofol.  相似文献   

5.
We investigated the potential involvement of peroxynitrite (ONOO(-)) in the modulation of calcium current (I(Ca)) in guinea pig ventricular myocytes with the whole-cell patch clamp technique and with cyclic AMP (cAMP) measurements. Because of the short half-life of ONOO(-) at physiological pH, we induced an increase in its intracellular levels by using donors of the precursors, nitric oxide (NO) and superoxide anion (O(2) (-)). High concentrations of NO donors, SpermineNONOate (sp/NO, 300 microM) or SNAP (300 microM) increased basal I(Ca) (50.3 +/- 4.6%, n = 7 and 46.2 +/- 5.0%, n = 13). The superoxide anion donor Pyrogallol (100 microM) also stimulated basal I(Ca) (44.6 +/- 2.8%, n = 11). At lower concentration sp/NO (10 nM) and Pyrogallol (1 microM), although separately ineffective on I(Ca), enhanced the current if applied together (33.5 +/- 0.7%, n = 7). The simultaneous donor of O(2) (-) and NO, SIN-1 (500 microM), also stimulated basal I(Ca) (22.8 +/- 2.1%, n = 13). In the presence of saturating cyclic GMP (cGMP, 50 microM) in the patch pipette or of extracellular dibutyryl cGMP (dbcGMP, 100 microM), I(Ca) was still increased by SIN-1 (32.0 +/- 6.1%, n = 4 and 30.0 +/- 5.4%, n = 8). Both Manganese(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP, 100 microM) a ONOO(-) scavenger, and superoxide dismutase (SOD) (150 U/ml) reversed the stimulatory effect of SIN-1 on I(Ca) (respectively -0.6 +/- 4.1%, n = 4 and 3.6 +/- 4.3%, n = 4). Intracellular cAMP level was unaltered by SIN-1, while it was enhanced by blocking the NO-cGMP pathway with the NO synthase inhibitor L-NMMA. These results suggest that peroxynitrite donors increase cardiac calcium current without the involvement of cAMP and cGMP.  相似文献   

6.
Peroxynitrite (ONOO(-)) is a contractile agonist of rat middle cerebral arteries. To determine the mechanism responsible for this component of ONOO(-) bioactivity, the present study examined the effect of ONOO(-) on ionic current and channel activity in rat cerebral arteries. Whole cell recordings of voltage-clamped cells were made under conditions designed to optimize K(+) current. The effects of iberiotoxin, a selective inhibitor of large-conductance Ca(2+)-activated K(+) (BK) channels, and ONOO(-) (10-100 microM) were determined. At a pipette potential of +50 mV, ONOO(-) inhibited 39% of iberiotoxin-sensitive current. ONOO(-) was selective for iberiotoxin-sensitive current, whereas decomposed ONOO(-) had no effect. In excised, inside-out membrane patches, channel activity was recorded using symmetrical K(+) solutions. Unitary currents were sensitive to increases in internal Ca(2+) concentration, consistent with activity due to BK channels. Internal ONOO(-) dose dependently inhibited channel activity by decreasing open probability and mean open times. The inhibitory effect of ONOO(-) could be overcome by reduced glutathione. Glutathione, added after ONOO(-), restored whole cell current amplitude to control levels and reverted single-channel gating to control behavior. The inhibitory effect of ONOO(-) on membrane K(+) current is consistent with its contractile effects in isolated cerebral arteries and single myocytes. Taken together, our data suggest that ONOO(-) has the potential to alter cerebral vascular tone by inhibiting BK channel activity.  相似文献   

7.
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.  相似文献   

8.
An antisense nitrite reductase (NiR, EC 1.7.7.1) tobacco ( Nicotiana tabacum L.) transformant (clone 271) was used to gain insight into a possible correlation between nitrate reductase (NR, EC 1.6.6.1)-dependent nitrite accumulation and nitric oxide (NO(.)) production, and to assess the regulation of signal transduction in response to stress conditions. Nitrite concentrations of clone 271 leaves were 10-fold, and NO(.) emission rates were 100-fold higher than in wild type leaves. Increased protein tyrosine nitration in clone 271 suggests that high NO(.) production resulted in increased peroxynitrite (ONOO(-)) formation. Tyrosine nitration was also observed in vitro by adding peroxynitrite to leaf extracts. As in mammalian cells, NO(.) and derivatives also increased synthesis of proteins like 14-3-3 and cyclophilins, which are both involved in regulation of activity and stability of enzymes.  相似文献   

9.
Nitric oxide (NO) can modulate red blood cell (RBC) glycolysis by translocation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) (EC 1.2.1.12) from the cytosolic domain of the membrane protein band 3 (cdb3) in the cytosol. In this study we have investigated which NO-reactive thiols might be influencing GAPD translocation and the specific role of glutathione. Two highly reactive Cys residues were identified by transnitrosylation with nitrosoglutathione (GSNO) of cdb3 and GAPD (K(2) = 73.7 and 101.5 M(-1) s(-1), respectively). The Cys 149 located in the catalytic site of GAPD is exclusively involved in the GSNO-induced nitrosylation. Reassociation experiments carried out at equilibrium with preparations of RBC membranes and GAPD revealed that different NO donors may form -SNO on, and decrease the affinity between, GAPD and cdb3. In intact RBC, the NO donors 3-morpholinosydnonimine (SIN-1) and peroxynitrite (ONOO(-)) significantly increased GAPD activity in the cytosol, glycolysis measured as lactate production, and energy charge levels. Our data suggest that ONOO(-) is the main NO derivative able to cross the RBC membrane, leading to GAPD translocation and -SNO formation. In cell-free experiments and intact RBC, diamide (a thiol oxidant able to inhibit GAPD activity) was observed to reverse the effect of SIN-1 on GAPD translocation. The results demonstrate that cdb3 and GAPD contain reactive thiols that can be transnitrosylated mainly by means of GSNO; these can ultimately influence GAPD translocation/activity and the glycolytic flux.  相似文献   

10.
The survival of skeletal muscle myoblasts in culture after exposure either to a donor of NO, sodium nitroprusside (SNP), or ethanamine, 2,2'-(hydroxynitrosohydrazono)bis-(DETA NONOate), or to a donor of both NO and O(-)(2), 3-morpholinosydnonimine hydrochloride (SIN-1), was investigated. SIN-1 reduced clonogenic survival markedly but donors of NO alone did not. The injurious effect of SIN-1 was prevented by oxyhemoglobin or by uric acid but not by superoxide dismutase. The exposure of myoblasts to authentic peroxynitrite (ONOO(-)) or to DETA NONOate in the presence of an O(-)(2)-generating system did not reduce their survival. The results show that NO or ONOO(-) alone is not detrimental to myoblast survival and suggest that SIN-1 toxicity is, at least in part, mediated by H(2)O(2) in this myoblast culture system.  相似文献   

11.
Under physiological conditions, small amounts of free arachidonic acid (AA) are released from membrane phospholipids, and cyclooxygenase (COX) and acyl-CoA synthetase (ACS) competitively act on this fatty acid to form prostaglandins (PGs) and arachidonoyl-CoA (AA-CoA). To clarify factors deciding the metabolic fate of free AA into these two pathways, we investigated the effects of a nitric oxide (NO) donor 1-hydroxyl-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7), and peroxynitrite (ONOO(-)) on the formation of PG and AA-CoA from high and low concentrations of AA (60 and 5 micro M) in rabbit kidney medulla microsomes. The kidney medulla microsomes were incubated with 60 or 5 micro M [14C]-AA in 0.1M Tris/HCl buffer (pH 8.0) containing cofactors of COX (reduced GSH and hydroquinone) and cofactors of ACS (ATP, MgCl(2) and CoA). After incubation, PG (as total PGs) and AA-CoA were separated by selective extraction using petroleum ether and ethyl acetate. When 60 micro M AA was used as the substrate concentration, NOC7 stimulated the PG formation at 0.5 micro M, and inhibited it at 50 and 100 micro M, without affecting the AA-CoA formation. When 5 micro M AA was used as the substrate concentration, NOC7 showed no effect on the PG and AA-CoA formation up to 10 micro M or below, but enhanced the AA-CoA formation with a coincident decrease in the PG formation at 50 micro M or over. Experiments utilizing a NO antidote, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, revealed that the observed effects of NOC7 using 60 and 5 micro M AA are caused by NO. On the other hand, ONOO(-) stimulated the PG formation from 60 micro M AA, with no alteration in the AA-CoA formation at a concentration of 100 micro M, but when 5 micro M AA was used as the substrate concentration, it was without effect on the PG and AA-CoA formation. These findings indicate that actions of NO and ONOO(-) on the PG and AA-CoA formation by the kidney medulla microsomes may change depending on the substrate concentration. The effects of NO using 5 micro M AA were reversed by the addition of the superoxide generating system (xanthine-xanthine oxidase plus catalase), indicating that superoxide is a vital modulator of the action of NO. These results suggest that NO, but not ONOO(-), can be a regulator of the PG and AA-CoA formation at low substrate concentrations (close to the physiological concentration of AA), and that superoxide may play an important role in the action of NO.  相似文献   

12.
The production of peroxynitrite (ONOO(-)) in the endothelium decreases NO bioavailability, decreases vasorelaxation and changes vascular tone. ONOO(-) can also influence the production of prostacyclin-another vasorelaxant. We used a nanotechnological approach (nanosensors) to elucidate the release of NO, O(2)(-), and ONOO(-) in endothelium and their effect on production of prostanoids. The basal ONOO(-) concentration near the endothelium (3-5 microm) varied from 1 to 50 nmol/L and maximal calcium ionophore stimulated ONOO(-), did not exceed 900 nmol/L. The highest ONOO(-) concentrations were produced in ischemia/reperfusion atherosclerosis, diabetes, aging and vary among different racial groups (higher in Blacks than in Whites). ONOO(-) decreased PGI(2) activity with IC(50) approximately 150 nmol/L for 8 min reaction time, but has no effect of short reaction time. Prostaglandin E(1) decreased NO, O(2)(-), and ONOO(-) by limiting Ca(2+) flux into endothelium, decreased edema and vasoconstriction during ischemia/reperfusion. In endothelium (HUVEC's) of Black's the ONOO(-) concentrations were high 750+/-50 nmol/L while the lowest concentrations of vasorelaxants were 275+/-25 nmol/L of NO, 150+/-15 pb/100 microg protein of 6-keto-PGF(1)(alpha) as compared to White's (420+/-30 and 470+/- nmol/L for ONOO(-) and NO respectively and 280+/-20 pg/100 mg protein for 6-keto-PGF(1)(alpha)).  相似文献   

13.
Regulation of xanthine oxidase by nitric oxide and peroxynitrite   总被引:5,自引:0,他引:5  
Xanthine oxidase (XO) is a central mechanism of oxidative injury as occurs following ischemia. During the early period of reperfusion, both nitric oxide (NO(*)) and superoxide (O-*(2)) generation are increased leading to the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the presence and nature of the interactions of NO(*) or ONOO(-) with XO and the role of this process in regulating oxidant generation. Therefore, we determined the dose-dependent effects of NO(*) and ONOO(-) on the O-*(2) generation and enzyme activity of XO, respectively, by EPR spin trapping of O-*(2) using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide and spectrophotometric assay. ONOO(-) markedly inhibited both O-*(2) generation and XO activity in dose-dependent manner, while NO(*) from NO(*) gas in concentrations up to 200 microM had no effect. Furthermore, we observed that NO(*) donors such as NOR-1 also inhibited O-*(2) generation and XO activity; however, these effects were O-*(2)-dependent and blocked by superoxide dismutase or ONOO(-) scavengers. Finally, we found that ONOO(-) totally abolished the Mo(V) EPR spectrum. These changes were irreversible, suggesting oxidative disruption of the critical molybdenum center of the catalytic site. Thus, ONOO(-) formed in biological systems can feedback and down-regulate XO activity and O-*(2) generation, which in turn may serve to limit further ONOO(-) formation.  相似文献   

14.
15.
Nitric oxide and cytokines constitute the molecular markers and the intercellular messengers of inflammation and septic shock. Septic shock occurs with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle appears as one of the main target organs in septic shock, showing an increased nitric oxide (NO) production, an early oxidative stress, and contractile failure. Mitochondria isolated from rat and human skeletal muscle in septic shock show a markedly increased NO generation and a decreased state 3 respiration, more marked with nicotinamide adenine dinucleotide (NAD)-linked substrates than with succinate, without uncoupling or impairment of phosphorylation. One of the current hypothesis for the molecular mechanisms of septic shock is that the enhanced NO production by mitochondrial nitric oxide synthase (mtNOS) leads to excessive peroxynitrite (ONOO(-)) production and protein nitration in the mitochondrial matrix, to mitochondrial dysfunction and to contractile failure. Surface chemiluminescence is a useful assay to assess inflammation and oxidative stress in in situ liver and skeletal muscle. Liver chemiluminescence in inflammatory processes and phagocyte chemiluminescence have been found spectrally different from spontaneous liver chemiluminescence with increased 440-600 nm emission, likely due to NO and ONOO(-) participation in the reactions leading to the formation of excited species.  相似文献   

16.
Two major betalains, red-purple betacyanins and yellow betaxanthins, were isolated from red beetroots (Beta vulgaris L.), and their peroxynitrite (ONOO(-)) scavenging capacity was investigated. Apparent colours of the betalains were bleached by the addition of ONOO(-), and the absorbance decreases were suppressed in the presence of glutathione, a ONOO(-) scavenger. After bleaching, a new absorption maximum was observed at 350 nm in the spectrum of the resulting reaction mixture. New peaks were detected from HPLC analysis of the reaction products of betanin, a representative constituent of red beetroot betacyanins, treated with ONOO(-) monitoring at 350 nm, and the intensity of the major peak was positively correlated with ONOO(-) concentration. Betanin inhibited the ONOO(-) (0.5 mM)-dependent nitration of tyrosine (0.1 mM). Additionally, the IC(50) value of betanin (19.2 μM) was lower than that of ascorbate (79.6 μM). The presence of betanin (0.05-1.0 mM) also inhibited ONOO(-) (0.5 mM)-dependent DNA strand cleavage in a concentration-dependent manner. These results suggest that betalains can protect cells from nitrosative stress in addition to protecting them from oxidative stresses.  相似文献   

17.
The biosynthesis of the physiological messenger nitric oxide (*NO) in neuronal cells is thought to depend on a glial-derived supply of the *NO synthase substrate arginine. To expand our knowledge of the mechanism responsible for this glial-neuronal interaction, we studied the possible roles of peroxynitrite anion (ONOO-), superoxide anion (O2*-), *NO, and H2O2 in L-[3H]arginine release in cultured rat astrocytes. After 5 min of incubation at 37 degrees C, initial concentrations of 0.05-2 mM ONOO- stimulated the release of arginine from astrocytes in a concentration-dependent way; this effect was maximum from 1 mM ONOO- and proved to be approximately 400% as compared with control cells. ONOO(-)-mediated arginine release was prevented by arginine transport inhibitors, such as L-lysine and N(G)-monomethyl-L-arginine, suggesting an involvement of the arginine transporter in the effect of ONOO-. In situ xanthine/xanthine oxidase-generated O2*- (20 nmol/min) stimulated arginine release to a similar extent to that found with 0.1 mM ONOO-, but this effect was not prevented by arginine transport inhibitors. *NO donors, such as sodium nitroprusside, S-nitroso-N-acetylpenicillamine, or 1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium+ ++-1,2-diolate, and H2O2 did not significantly modify arginine release. As limited arginine availability for neuronal *NO synthase activity may be neurotoxic due to ONOO- formation, our results suggest that ONOO(-)-mediated arginine release from astrocytes may contribute to replenishing neuronal arginine, hence avoiding further generation of ONOO- within these cells.  相似文献   

18.
To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair.  相似文献   

19.
Activation of the NADPH oxidase-derived oxidant burst of polymorphonuclear leukocytes (PMNs) is of critical importance in inflammatory disease. PMN-derived superoxide (O(2)) can be scavenged by nitric oxide (NO( small middle dot)) with the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the effects and mechanisms by which NO( small middle dot) and ONOO(-) modulate the PMN oxidative burst. Therefore, we directly measured the dose-dependent effects of NO( small middle dot) and ONOO(-) on O(2) generation from human PMNs stimulated with phorbol 12-myristate 13-acetate using EPR spin trapping. Pretreatment with low physiological (microm) concentrations of NO( small middle dot) from NO( small middle dot) gas had no effect on PMN O(2) generation, whereas high levels (> or =50 microm) exerted inhibition. With ONOO(-) pretreatment, however, a biphasic modulation of O(2) generation was seen with stimulation by microm levels, but inhibition at higher levels. With the NO( small middle dot) donor NOR-1, which provides more sustained release of NO( small middle dot) persisting at the time of O(2) generation, a similar biphasic modulation of O(2) generation was seen, and this was inhibited by ONOO(-) scavengers. The enhancement of O(2) generation by low concentrations of ONOO(-) or NOR-1 was associated with activation of the ERK MAPKs and was blocked by their inhibition. Thus, low physiological levels of NO( small middle dot) present following PMN activation are converted to ONOO(-), which enhances O(2) generation through activation of the ERK MAPK pathway, whereas higher levels of NO( small middle dot) or ONOO(-) feed back and inhibit O(2) generation. This biphasic concentration-dependent regulation of the PMN oxidant burst by NO( small middle dot)-derived ONOO(-) may be of critical importance in regulating the process of inflammation.  相似文献   

20.
Imaizumi N  Miyagi S  Aniya Y 《Life sciences》2006,78(26):2998-3006
The effect of reactive nitrogen species on rat liver microsomal glutathione S-transferase (MGST1) was investigated using microsomes and purified MGST1. When microsomes or the purified enzyme were incubated with peroxynitrite (ONOO(-)), the GST activity was increased to 2.5-6.5 fold in concentration-dependent manner and a small amount of the MGST1 dimer was detected. MGST1 activity was increased by ONOO(-) in the presence of high amounts of reducing agents including glutathione (GSH) and the activities increased by ONOO(-) or ONOO(-) plus GSH treatment were decreased by 30-40% by further incubation with dithiothreitol (DTT, reducing disulfide) or by sodium arsenite (reducing sulfenic acid). Furthermore, GSH was detected by HPLC from the MGST1 which was incubated with ONOO(-) plus GSH or S-nitrosoglutathione followed by DTT treatment. In addition, the MGST1 activity increased by nitric oxide (NO) donors such as S-nitrosoglutathione, S-nitrosocysteine or the non-thiol NO donor 1-hydroxy-2-oxo-3 (3-aminopropyl)-3-isopropyl was restored by the DTT treatment. Since DTT can reduce S-nitrosothiol and disulfide bond to thiol, S-nitrosylation and a mixed disulfide bond formation of MGST1 were suggested. Thus, it was demonstrated that MGST1 is activated by reactive nitrogen species through a forming dimeric protein, mixed disulfide bond, nitrosylation and sulfenic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号