首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
孟庆峰  刘晓勇 《昆虫学报》2013,56(8):925-933
杆状病毒与昆虫宿主相互作用是一种基本的分子和生态问题, 不仅在农业上, 而且在真核表达系统、 基因治疗、 蛋白表面展示 系统以及基因工程疫苗等方面都有重要的实际应用。杆状病毒还是一种很有潜力的病毒杀虫剂, 而且对环境来说是安全的。研究这些相互 作用也产生了许多重要和有价值的发现。杆状病毒生命循环中存在两种不同形式的病毒, 即包埋型病毒粒子(occlusion derived virus, ODV) 和出芽型病毒粒子(budded virus, BV)。ODV包裹于多角体中, 主要负责宿主的原发感染; 而BV由感染的宿主细胞释放后引发继发 感染。病毒侵染起始于敏感的昆虫宿主食用了污染包涵体病毒的植物。在宿主中肠的碱性环境中, 多角体溶解释放ODV, ODV与宿主肠道 柱状上皮细胞细胞膜融合, 通过内吞体进入细胞。之后核衣壳从内吞体中逃脱并被转运到细胞核。病毒转录和复制在细胞核进行, 新生 的BV粒子从基底膜出芽引起全身感染。杆状病毒与宿主细胞相互作用包括从病毒结合和进入时的相互作用, 到宿主基因表达调节, 以及 修饰与调节细胞和机体所发生的生理和防御的相互作用的复杂和微妙的机制。本文主要以杆状病毒侵染昆虫宿主的过程为线索, 总结和评 述了杆状病毒与昆虫宿主相互作用方面研究的最新进展, 特别是杆状病毒基因在病毒入侵过程中所起的作用。  相似文献   

5.
6.
Disruption of specific components of the host cytoskeleton has been reported for several viruses and is thought to be beneficial for viral replication and spread. Our previous work demonstrated that infection of swine kidney (SK-6) cells with pseudorabies virus (PRV), a swine alphaherpesvirus, induced actin stress fiber breakdown. In the present study, using several PRV deletion mutants, we found that the US3 serine/threonine (S/T) protein kinase is involved in breakdown of actin stress fibers in different PRV-infected cell lines. Further, by transfection assays, we showed that PRV US3 itself, in the absence of other viral proteins, is able to trigger actin stress fiber breakdown when it is localized in sufficient amounts in the nucleus.  相似文献   

7.
Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions.  相似文献   

8.
9.
Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11’s interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.  相似文献   

10.
Viral replication depends on specific interactions with host factors. For example, poliovirus RNA replication requires association with intracellular membranes. Brefeldin A (BFA), which induces a major rearrangement of the cellular secretory apparatus, is a potent inhibitor of poliovirus RNA replication. Most aspects governing the relationship between viral replication complex and the host membranes remain poorly defined. To explore these interactions, we used a genetic approach and isolated BFA-resistant poliovirus variants. Mutations within viral proteins 2C and 3A render poliovirus resistant to BFA. In the absence of BFA, viruses containing either or both of these mutations replicated similarly to wild type. In the presence of BFA, viruses carrying a single mutation in 2C or 3A exhibited an intermediate-growth phenotype, while the double mutant was fully resistant. The viral proteins 2C and 3A have critical roles in both RNA replication and vesicle formation. The identification of BFA resistant mutants may facilitate the identification of cellular membrane-associated proteins necessary for induction of vesicle formation and RNA replication. Importantly, our data underscore the dramatic plasticity of the host-virus interactions required for successful viral replication.  相似文献   

11.
Lai CK  Jeng KS  Machida K  Lai MM 《Journal of virology》2008,82(17):8838-8848
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.  相似文献   

12.
The influenza A virus is a causative agent of influenza, which infects human cells and uses host factors to accomplish viral genome replication as part of its life cycle. The nucleoprotein (NP) and PB2 of the influenza virus associate with importin α1 to gain access to the host nucleus through a ternary import complex. Killer cell-mediated cytotoxicity is the primary mechanism of eliminating the influenza virus. Here, we showed that lymphokine-activated killer cells participated in the elimination of the influenza virus. Granzyme (Gzm) K inhibition elevated viral replication in vitro and aggravated viral infection in vivo. We identified that importin α1 and its transport partner protein importin β are physiological substrates of GzmK. Proteolysis of these two substrates wrecked their association to generate the importin α1/β dimer and disrupted transportation of viral NP to the nucleus, leading to inhibition of influenza virus replication.  相似文献   

13.
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.  相似文献   

14.
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.  相似文献   

15.
The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.  相似文献   

16.
17.
Rho family GTPases have been implicated in neuronal growth cone guidance; however, the underlying cytoskeletal mechanisms are unclear. We have used multimode fluorescent speckle microscopy (FSM) to directly address this problem. We report that actin arcs that form in the transition zone are incorporated into central actin bundles in the C domain. These actin structures are Rho/Rho Kinase (ROCK) effectors. Specifically, LPA mediates growth cone retraction by ROCK-dependent increases in actin arc and central actin bundle contractility and stability. In addition, these treatments had marked effects on MT organization as a consequence of strong MT-actin arc interactions. In contrast, LPA or constitutively active Rho had no effect on P domain retrograde actin flow or filopodium bundle number. This study reveals a novel mechanism for domain-specific spatial control of actin-based motility in the growth cone with implications for understanding chemorepellant growth cone responses and nerve regeneration.  相似文献   

18.
Flaviviral replication is believed to be exclusively cytoplasmic, occurring within virus-induced membrane-bound replication complexes in the host cytoplasm. Here we show that a significant proportion (20%) of the total RNA-dependent RNA polymerase (RdRp) activity from cells infected with West Nile virus, Japanese encephalitis virus (JEV), and dengue virus is resident within the nucleus. Consistent with this, the major replicase proteins NS3 and NS5 of JEV also localized within the nucleus. NS5 was found distributed throughout the nucleoplasm, but NS3 was present at sites of active flaviviral RNA synthesis, colocalizing with NS5, and visible as distinct foci along the inner periphery of the nucleus by confocal and immunoelectron microscopy. Both these viral replicase proteins were also present in the nuclear matrix, colocalizing with the peripheral lamina, and revealed a well-entrenched nuclear location for the viral replication complex. In keeping with this observation, antibodies to either NS3 or NS5 coimmunoprecipitated the other protein from isolated nuclei along with newly synthesized viral RNA. Taken together these data suggest an absolute requirement for both of the replicase proteins for nucleus-localized synthesis of flavivirus RNA. Thus, we conclusively demonstrate for the first time that the host cell nucleus functions as an additional site for the presence of functionally active flaviviral replicase complex.  相似文献   

19.
Chlamydiae are gram-negative obligate intracellular pathogens to which access to an intracellular environment is paramount to their survival and replication. To this end, chlamydiae have evolved extremely efficient means of invading nonphagocytic cells. To elucidate the host cell machinery utilized by Chlamydia trachomatis in invasion, we examined the roles of the Rho GTPase family members in the internalization of chlamydial elementary bodies. Upon binding of elementary bodies on the cell surface, actin is rapidly recruited to the sites of internalization. Members of the Rho GTPase family are frequently involved in localized recruitment of actin. Clostridial Toxin B, which is a known enzymatic inhibitor of Rac, Cdc42 and Rho GTPases, significantly reduced chlamydial invasion of HeLa cells. Expression of dominant negative constructs in HeLa cells revealed that chlamydial uptake was dependent on Rac, but not on Cdc42 or RhoA. Rac but not Cdc42 was found to be activated by chlamydial attachment. The effect of dominant negative Rac expression on chlamydial uptake is manifested through the inhibition of actin recruitment to the sites of chlamydial entry. Studies utilizing Green Fluorescent Protein fusion constructs of Rac, Cdc42 and RhoA, showed Rac to be the sole member of the Rho GTPase family recruited to the site of chlamydial entry.  相似文献   

20.
Bornaviruses are the only animal RNA viruses that establish a persistent infection in their host cell nucleus. Studies of bornaviruses have provided unique information about viral replication strategies and virus–host interactions. Although bornaviruses do not integrate into the host genome during their replication cycle, we and others have recently reported that there are DNA sequences derived from the mRNAs of ancient bornaviruses in the genomes of vertebrates, including humans, and these have been designated endogenous borna-like (EBL) elements. Therefore, bornaviruses have been interacting with their hosts as driving forces in the evolution of host genomes in a previously unexpected way. Studies of EBL elements have provided new models for virology, evolutionary biology and general cell biology. In this review, we summarize the data on EBL elements including what we have newly identified in eukaryotes genomes, and discuss the biological significance of EBL elements, with a focus on EBL nucleoprotein elements in mammalian genomes. Surprisingly, EBL elements were detected in the genomes of invertebrates, suggesting that the host range of bornaviruses may be much wider than previously thought. We also review our new data on non-retroviral integration of Borna disease virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号