首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
Excessive mechanical loading can lead to matrix damage and chondrocyte death in articular cartilage. Previous studies on chondral and osteochondral explants have not clearly distinguished to what extent the degree and the distribution of cell death are dependent on the presence of an underlying layer of bone. The current study hypothesized that the presence of underlying bone would decrease the amount of matrix damage and cell death. Chondral and osteochondral explants were loaded to 30 MPa at a high rate of loading (approximately 600 MPa/s) or at a low rate of loading (30 MPa/s). After 24 hours in culture, matrix damage was assessed by the total length and average depth of surface fissures. The explants were also sectioned and stained for cell viability in the various layers of the cartilage. More matrix damage was documented in chondral than osteochondral explants for each rate of loading experiment. The total amount of cell death was also less in osteochondral explants than chondral explants. The presence of underlying bone significantly reduced the extent of cell death in all zones in low rate of loading tests. The percentage of cell death was also reduced in the intermediate zone and deep zones of the explant by the presence of the underlying bone for a high rate of loading. This study indicated that the presence of underlying bone significantly limited the degree of matrix damage and cell death, and also affected the distribution of dead cells through the explant thickness. These data may have relevance to the applicability of experimental data from chondral explants to the in situ condition.  相似文献   

2.
Macroscopic structural damage to the cartilage articular surface can occur due to slicing in surgery, cracking in mechanical trauma, or fibrillation in early stage osteoarthrosis. These alterations may render cartilage matrix and chondrocytes susceptible to subsequent mechanical injury and contribute to progression of degenerative disease. To examine this hypothesis, single 300 microm deep vertical slices were introduced across a diameter of the articular surface of osteochondral explant disks on day 6 after dissection. Then a single uniaxial unconfined ramp compression at 7 x 10(-5) or 7 x 10(-2) s(-1) strain rate to a peak stress of 3.5 or 14 MPa was applied on day 13 during which mechanical behavior was monitored. Effects of slices alone and together with compression were measured in terms of explant swelling and cell viability on days 10 and 17. Slicing alone induced tissue swelling without significant cell death, while compression alone induced cell death without significant tissue swelling. Under low strain rate loading, no differences in the response to injurious compression were found between sliced and unsliced explants. Under high strain rate loading, slicing rendered cartilage more easily compressible and appeared to slightly reduce compression-induced cell and matrix injury. Findings highlight microphysical factors important to cartilage mechanical injury, and suggest ways that macroscopic structural damage may accelerate or, in certain cases, possibly slow the progression of cartilage degeneration.  相似文献   

3.
Morel V  Quinn TM 《Biorheology》2004,41(3-4):509-519
The short-term responses of articular cartilage to mechanical injury have important implications for prevention and treatment of degenerative disease. Cell and matrix responses were monitored for 11 days following injurious compression of cartilage in osteochondral explants. Injury was applied as a single ramp compression to 14 MPa peak stress at one of three strain rates: 7 x 10(-1), 7 x 10(-3) or 7 x 10(-5) s(-1). Responses were quantified in terms of the appearance of macroscopic matrix cracks, changes in cell viability, and changes in cartilage wet weights. Loading at the highest strain rate resulted in acute cell death near the superficial zone in association with cracks, followed over the 11 days after compression by a gradual increase in cell death and loss of demarcation between matrix zones containing viable versus nonviable cells. In contrast, loading at the lowest strain rate resulted in more severe, nearly full-depth cell death acutely, but with no apparent worsening over the 11 days following compression. Between days 4 and 11, all mechanically injured explants significantly increased in wet weight, suggesting loss of matrix mechanical integrity independent of compression strain rate. Results demonstrate that short-term responses of cartilage depend upon the biomechanical characteristics of injurious loading, and suggest multiple independent pathways of mechanically-induced cell death and matrix degradation. Modifications to an existing fiber-reinforced poroelastic finite element model were introduced and the model was used for data interpretation and identification of microphysical events involved in cell and matrix injury. The model performed reasonably well at the slower strain rates and exhibited some capacity for anticipating the formation of superficial cracks during injurious loading. However, several improvements appear to be necessary before such a model could reliably be used to draw upon in vitro experimental results for prediction of injurious loading situations in vivo.  相似文献   

4.
The biomechanical response of articular cartilage to a wide range of impact loading rates was investigated for stress magnitudes that exist during joint trauma. Viable, intact bovine cartilage explants were impacted in confined compression with stress rates of 25, 50, 130 and 1000 MPa/s and stress magnitudes of 10, 20, 30 and 40 MPa. Water loss, cell viability, dynamic impact modulus (DIM) and matrix deformation were measured. Under all loading conditions the water loss was small (approximately 15%); water loss increased linearly with increasing peak stress and decreased exponentially with increasing stress rate. Cell death was localized within the superficial zone (< or =12% of total tissue thickness); the depth of cell death from the articular surface increased with peak stress and decreased with increasing stress rate. The DIM increased (200-700 MPa) and matrix deformation decreased with increasing stress rate. Initial water and proteoglycan (PG) content had a weak, yet significant influence on water loss, cell death and DIM. However, the significance of the inhomogeneous structure and composition of the cartilage matrix was accentuated when explants impacted on the deep zone had less water loss and matrix deformation, higher DIM, and no cell death compared to explants impacted on the articular surface. The mechano-biological response of articular cartilage depended on magnitude and rate of impact loading.  相似文献   

5.
Allografts of articular cartilage are both used clinically for tissue-transplantation procedures and experimentally as model systems to study the physiological behavior of chondrocytes in their native extracellular matrix. Long-term maintenance of allograft tissue is challenging. Chemical mediators in poorly defined culture media can stimulate cells to quickly degrade their surrounding extracellular matrix. This is particularly true of juvenile cartilage which is generally more responsive to chemical stimuli than mature tissue. By carefully modulating the culture media, however, it may be possible to preserve allograft tissue over the long-term while maintaining its original mechanical and biochemical properties. In this study juvenile bovine cartilage explants (both chondral and osteochondral) were cultured in both chemically defined medium and serum-supplemented medium for up to 6 weeks. The mechanical properties and biochemical content of explants cultured in chemically defined medium were enhanced after 2 weeks in culture and thereafter remained stable with no loss of cell viability. In contrast, the mechanical properties of explants in serum-supplemented medium were degraded by ( approximately 70%) along with a concurrent loss of biochemical content (30-40% GAG). These results suggest that long-term maintenance of allografts can be extended significantly by the use of a chemically defined medium.  相似文献   

6.
This study analyzes the molecular response of articular chondrocytes to short-term mechanical loading with a special focus on gene expression of molecules relevant for matrix turnover. Porcine cartilage explants were exposed to static and dynamic unconfined compression and viability of chondrocytes was assessed to define physiologic loading conditions. Cell death in the superficial layer correlated with mechanical loading and occurred at peak stresses >or=6 MPa and a cartilage compression above 45%. Chondrocytes in native cartilage matrix responded to dynamic loading by rapid and highly specific suppression of collagen expression. mRNA levels dropped 11-fold (collagen 2; 6 MPa, P=0.009) or 14-fold (collagen 1; 3 and 6 MPa, P=0.009) while levels of aggrecan, tenascin-c, matrix metalloproteinases (MMP1, 3, 13, 14), and their inhibitors (TIMP1-3) did not change significantly. Thus, dynamic mechanical loading rapidly shifted the balance between collagen and aggrecan/tenascin/MMP/TIMP expression. A better knowledge of the chondrocyte response to mechanical stress may improve our understanding of mechanically induced osteoarthrits.  相似文献   

7.
Excessive mechanical loading to a joint has been linked with the development of post-traumatic osteoarthritis (OA). Among the suspected links between impact trauma to a joint and associated degeneration of articular cartilage is an acute reduction in chondrocyte viability. Recently, the non-ionic surfactant poloxamer 188 (P188) has been shown to reduce by approximately 50% the percentage of non-viable chondrocytes 24 h post-injury in chondral explants exposed to 25 MPa of unconfined compression. There is a question whether these acutely ‘saved’ chondrocytes will continue to degrade over time, as P188 is only thought to act by acute repair of damaged cell membranes. In order to investigate the degradation of traumatized chondrocytes in the longer term, the current study utilized TUNEL staining to document the percentage of cells suffering DNA fragmentation with and without an immediate 24 h period of exposure of the explants to P188 surfactant. In the current study, as in the previous study by this laboratory, chondral explants were excised from bovine metacarpophalangeal joints and subjected to 25 MPa of unconfined compression. TUNEL staining was performed at 1 h, 4 days, and 7 days post-impact. The current study found that P188 was effective in reducing the percentage of cells with DNA fragmentation in impacted explants by approximately 45% at 4 and 7 days post-impact. These data suggest that early P188 intervention was effective in preventing DNA fragmentation of injured chondrocytes. The current hypothesis is that this process was mitigated by the acute repair of damaged plasma membranes by the non-ionic surfactant P188, and that most repaired cells did not continue to degrade as measured by the fragmentation of their DNA.  相似文献   

8.
9.
The boundary lubrication function of articular cartilage is mediated in part by molecules at the articular surface and in synovial fluid, encoded by Prg4. The objective of this study was to determine whether static and dynamic compression regulate PRG4 biosynthesis by cartilage explants. Articular cartilage disks were harvested to include the articular surface from immature bovines. Some disks were subjected to 24 h (day 1) of loading, followed by 72 h (days 2-4) of free-swelling culture to assess chondrocyte responses following unloading. Loading consisted of 6 or 100 kPa of static compression, with or without superimposed dynamic compression (10 or 300 kPa peak amplitude, 0.01 Hz). Other disks were cultured free-swelling as controls. PRG4 secretion into culture medium was inhibited by all compression protocols during day 1. Following unloading, cartilage previously subjected to dynamic compression to 300 kPa exhibited a rebound effect, secreting more PRG4 than did controls, while cartilage previously subjected to 100 kPa static loading secreted less PRG4. Immunohistochemistry revealed that all compression protocols also affected the number of cells expressing PRG4. The paradigm that mechanical stimuli regulate biosynthesis in cartilage appears operative not only for load bearing matrix constituents, but also for PRG4 molecules mediating lubrication.  相似文献   

10.
A bovine cartilage explant system was used to evaluate the effects of injurious compression on chondrocyte apoptosis and matrix biochemical and biomechanical properties within intact cartilage. Disks of newborn bovine articular cartilage were compressed in vitro to various peak stress levels and chondrocyte apoptotic cell death, tissue biomechanical properties, tissue swelling, glycosaminoglycan loss, and nitrite levels were quantified. Chondrocyte apoptosis occurred at peak stresses as low as 4.5 MPa and increased with peak stress in a dose-dependent manner. This increase in apoptosis was maximal by 24 h after the termination of the loading protocol. At high peak stresses (>20 MPa), greater than 50% of cells apoptosed. When measured in uniaxial confined compression, the equilibrium and dynamic stiffness of explants decreased with the severity of injurious load, although this trend was not significant until 24-MPa peak stress. In contrast, the equilibrium and dynamic stiffness measured in radially unconfined compression decreased significantly after injurious stresses of 12 and 7 MPa, respectively. Together, these results suggested that injurious compression caused a degradation of the collagen fibril network in the 7- to 12-MPa range. Consistent with this hypothesis, injurious compression caused a dose-dependent increase in tissue swelling, significant by 13-MPa peak stress. Glycosaminoglycans were also released from the cartilage in a dose-dependent manner, significant by 6- to 13-MPa peak stress. Nitrite levels were significantly increased above controls at 20-MPa peak stress. Together, these data suggest that injurious compression can stimulate cell death as well as a range of biomechanical and biochemical alterations to the matrix and, possibly, chondrocyte nitric oxide expression. Interestingly, chondrocyte programmed cell death appears to take place at stresses lower than those required to stimulate cartilage matrix degradation and biomechanical changes. While chondrocyte apoptosis may therefore be one of the earliest responses to tissue injury, it is currently unclear whether this initial cellular response subsequently drives cartilage matrix degradation and changes in the biomechanical properties of the tissue.  相似文献   

11.
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.  相似文献   

12.
The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cases with diverse material properties. The lower and upper elastic limits of the stress (under a given strain) are uniquely established by the instantaneous and equilibrium stiffness (obtained numerically for finite deformations and analytically for small deformations). These limits could be used to determine safe loading protocols in order that the stress in each solid constituent remains within its own elastic limit. For a given compressive strain applied at a low rate, the loading is close to the lower limit and is mostly borne directly by the solid constituents (with little contribution from the fluid). In contrast, however in case of faster compression, the extra loading is predominantly transported to the fibrillar matrix via rising fluid pressure with little increase of stress in the nonfibrillar matrix. The fibrillar matrix absorbs the loading increment by self-stiffening: the quicker the loading the faster the fibril stiffening until the upper elastic loading limit is reached. This self-protective mechanism prevents cartilage from damage since the fibrils are strong in tension. The present work demonstrates the ability of the fibril reinfored poroelastic models to describe the strain rate dependent behavior of articular cartilage in unconfined compression using a mechanism of fibril stiffening mainly induced by the fluid flow.  相似文献   

13.
Dynamic mechanical loading has been reported to affect chondrocyte biosynthesis in both cartilage explant and chondrocyte-seeded constructs. In this study, the effects of dynamic compression on chondrocyte-seeded peptide hydrogels were analyzed for extracellular matrix synthesis and retention over long-term culture. Initial studies were conducted with chondrocyte-seeded agarose hydrogels to explore the effects of various non-continuous loading protocols on chondrocyte biosynthesis. An optimized alternate day loading protocol was identified that increased proteoglycan (PG) synthesis over control cultures maintained in free-swelling conditions. When applied to chondrocyte-seeded peptide hydrogels, alternate day loading stimulated PG synthesis up to two-fold higher than that in free-swelling cultures. While dynamic compression also increased PG loss to the medium throughout the 39-day time course, total PG accumulation in the scaffold was significantly higher than in controls after 16 and 39 days of loading, resulting in an increase in the equilibrium and dynamic compressive stiffness of the constructs. Viable cell densities of dynamically compressed cultures differed from free-swelling controls by less than 20%, demonstrating that changes in PG synthesis were due to an increase in the average biosynthesis per viable cell. Protein synthesis was not greatly affected by loading, demonstrating that dynamic compression differentially regulated the synthesis of PGs. Taken together, these results demonstrate the potential of dynamic compression for stimulating PG synthesis and accumulation for applications to in vitro culture of tissue engineered constructs prior to implantation.  相似文献   

14.
The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.  相似文献   

15.
Significant evidence exists that trauma to a joint produced by a single impact load below that which causes subchondral bone fracture can result in permanent damage to the cartilage matrix, including surface fissures, loss of proteoglycan, and cell death. Limited information exists, however, on the effect of a varying impact stress on chondrocyte biophysiology and matrix integrity. Based on our previous work, we hypothesized that a stress-dependent response exists for both the chondrocyte's metabolic activity and viability and the matrix's hydration. This hypothesis was tested by impacting bovine cartilage explants with nominal stresses ranging from 0.5 to 65 MPa and measuring proteoglycan biosynthesis, cell viability, and water content immediately after impaction and 24 hours later. We found that proteoglycan biosynthesis decreased and water content increased with increasing impact stress. However, there appeared to be a critical threshold stress (15-20 MPa) that caused cell death and apparent rupture of the collagen fiber matrix at the time of impaction. We concluded that the cell death and collagen rupture are responsible for the observed alterations in the tissue's metabolism and water content, respectively, although the exact mechanism causing this damage could not be determined.  相似文献   

16.
We have developed a novel mechanically active cartilage culture device capable of modulating the interplay between compression and shear, at physiologic stress levels (2-5 MPa). This triaxial compression culture system subjects cylindrical cartilage explants to pulsatile axial compression from platen contact, plus pulsatile radially transverse compression from external fluid compression. These compressive loads can be independently modulated to impose stress states that resemble normal physiologic loading, and to investigate perturbations of individual components of the multi-axial stress state, such as increased shear stress. Based on the observation that joint incongruity predisposes cartilage to premature degeneration, we hypothesized that cartilage extracellular matrix (ECM) synthesis would be inhibited under conditions of low transverse buttressing (high shear stress). To test this hypothesis, we compared ECM synthesis in human cartilage explants exposed to axial compression without transverse compression (high shear stress), versus explants exposed to axial compression plus an equal level of transverse compression (low shear stress). Both total (35)SO(4) incorporation and aggrecan-specific (35)SO(4) incorporation were significantly inhibited by axial compression, relative to axial plus transverse compression.  相似文献   

17.
Cells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix. Many cells are surrounded by extracellular matrix that allows for tissue mechanical function. Although prior studies demonstrate that extracellular stiffness is important in cell differentiation, morphology and phenotype, it remains largely unknown how a cell’s biological response to cyclical loading varies with changes in surrounding substrate stiffness. Understanding these processes is important for understanding cells that are cyclically loaded during daily in vivo activities (e.g. chondrocytes and walking). This study uses high-performance liquid chromatography – mass spectrometry to identify metabolomic changes in primary chondrocytes under cyclical compression for 0–30 minutes in low- and high-stiffness environments. Metabolomic analysis reveals metabolites and pathways that are sensitive to substrate stiffness, duration of cyclical compression, and a combination of both suggesting changes in extracellular stiffness in vivo alter mechanosensitive signaling. Our results further suggest that cyclical loading minimizes matrix deterioration and increases matrix production in chondrocytes. This study shows the importance of modeling in vivo stiffness with in vitro models to understand cellular mechanotransduction.  相似文献   

18.
Solute transport through the extracellular matrix is essential for cellular activities in articular cartilage. Increased solute transport via fluid convection may be a mechanism by which dynamic compression stimulates chondrocyte metabolism. However, loading conditions that optimally augment transport likely vary for different solutes. To investigate effects of dynamic loading on transport of a bioactive solute, triangular mechanical loading waveforms were applied to cartilage explants disks while interstitial transport of a fluorescent glucose analog was monitored. Peak-to-peak compression amplitudes varied from 5-50% and frequencies varied from 0.0006-0.1 Hz to alter the spatial distribution and magnitude of oscillatory fluid flow. Solute transport was quantified by monitoring accumulation of fluorescence in a saline bath circulated around the explant. Individual explants were subjected to a series of compression protocols, so that effects of loading on solute desorption could be observed directly. Maximum increases in solute transport were obtained with 10-20% compression amplitudes at 0.1 Hz; similar loading protocols were previously found to stimulate chondrocyte metabolism in vitro. Results therefore support hypotheses relating to increased solute transport as a mediator of the cartilage biological response to dynamic compression, and may have application in mechanical conditioning of cartilage constructs for tissue engineering.  相似文献   

19.
《Biorheology》1996,33(4-5):289-304
To study the effect of dynamic mechanical force on cartilage metabolism, many investigators have applied a cyclic compressive load to cartilage disc explants in vitro. The most frequently used in vitro testing protocol has been the cyclic unconfined compression of articular cartilage in a bath of culture medium. Cyclic compression has been achieved by applying either a prescribed cyclic displacement or a prescribed cyclic force on a loading platen placed on the top surface of a cylindrical cartilage disc. It was found that the separation of the loading platen from the tissue surface was likely when a prescribed cyclic displacement was applied at a high frequency.The purpose of the present study was to simulate mathematically the dynamic behavior of a cylindrical cartilage disc subjected to cyclic unconfined compression under a dynamic force boundary condition protocol, and to provide a parametric analysis of mechanical deformations within the extracellular matrix. The frequency-dependent dynamic characteristics of dilatation, hydrostatic pressure and interstitial fluid velocity were analyzed over a wide range of loading frequencies without the separation of the loading platen. The result predicted that a cyclic compressive force created an oscillating positive-negative hydrostatic pressure together with a forced circulation of interstitial fluid within the tissue matrix. It was also found that the load partitioning mechanism between the solid and fluid phases was a function of loading frequency. At a relatively high loading frequency, a localized dynamic zone was developed near the peripheral free surface of the cartilage disc, where a large dynamic pressure gradient exists, causing vigorous interstitial fluid flow.  相似文献   

20.
Microcracking has been shown to occur when bone is 'damaged' as shown by a loss of stiffness. The effect on bone's toughness of the types of damage produced at low losses of stiffness are not known. We loaded bovine bone specimens in bending and tension to stiffness losses of up to 27%, and examined the microcracking produced. The tensile specimens had diffuse arrays of microcracks of 2-20 microm in length, characteristic of tensile loading, on all surfaces. The bending specimens showed tensile microcracking on the tensile surface and characteristic long, straight, cross-hatched compression cracks on the compressive surface. Specimens were then broken in impact. Those that had been damaged in bending were divided into two groups, in one group the part of the specimen which had undergone compression damage was placed in tension, and in the other group the tensile damage was placed in tension. Tensile damage loaded in tension did not reduce the bone's energy-absorbing ability in impact until a modulus reduction of over 20%. However compression damage loaded in tension did severely reduce the bone's energy absorption capabilities (by an average of about 40%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号