首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus.

Methods and Results

The compounds were tested at a concentration of 100 μg ml?1 in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein‐supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti‐aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein‐amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti‐aflatoxigenic activity in the YES medium.

Conclusions

Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol‐related compounds against aflatoxigenic fungi.

Significance and Impact of the Study

Studies utilizing gossypol‐related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins.  相似文献   

2.
3.
Four agar media used to isolate aflatoxin producing fungi were compared for utility in isolating fungi in theAspergillus flavus group from agricultural soils collected in 15 fields and four states in the southern United States. The four media wereAspergillus flavus andparasiticus Agar (AFPA, 14), the rose bengal agar described by Bell and Crawford (BCRB; 3), a modified rose bengal agar (M-RB), and Czapek's-Dox Agar supplemented with the antibiotics in BC-RB (CZ-RB). M-RB was the most useful for studying the population biology of this group because it permitted both identification of the greatest number ofA. flavus group strains and growth of the fewest competing fungi. M-RB supported an average of 12% moreA. flavus group colonies than the original rose bengal medium while reducing the number of mucorales colonies and the number of total fungi by 99% and 70%, respectively. M-RB was successfully employed to isolate all three aflatoxin producing species,A. flavus, A. parasiticus andA. nomius, and both the S and L strains ofA. flavus. M-RB is a defined medium without complex nitrogen and carbon sources (e.g. peptone and yeast extract) present in BC-RB. M-RB should be useful for studies on the population biology of theA. flavus group.Abbreviations M-RB Modified Rose Bengal Agar - CZ-RB Czapeks Rose Bengal Agar - BC-RB Bell and Crawford's Rose Bengal Agar - AFPA Aspergillus flavus andparasiticus agar  相似文献   

4.
The ability of 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 to degrade aflatoxin varied depending on the substrate used to grow the mold. Substrates which allowed substantial mycelial growth yielded mycelia which actively degraded aflatoxin. Substrates which allowed minimal growth of mycelia yielded mycelia with little ability to degrade aflatoxin. Biodegradation of aflatoxin was also strain-dependent. A. parasiticus NRRL 2999 and NRRL 3000 actively degraded aflatoxin, A. flavus NRRL 3353 was less active, and A. flavus NRRL 482 and A. parasiticus NRRL 3315 degraded minimal amounts of aflatoxins. Those aspergilli producing greatest amounts of aflatoxin also degraded aflatoxins most rapidly, whereas those strains which produced minimal amounts of aflatoxin generally degraded aflatoxins less effectively. Substrates which allowed maximum aflatoxin production also yielded mycelia which actively degraded aflatoxins, whereas media which allowed limited production of aflatoxin generally yielded mycelia with minimal ability to degrade the toxin. Although exceptions exist, generally as aflatoxin production increased so did the ability of mycelia to degrade the toxin.  相似文献   

5.
Iturin A, a peptidolipid produced byBacillus subtilis, inhibits growth of a large number of fungi. In this study, the effects of iturin A were evaluated on nine isolates ofA. flavus and seven isolates ofA. parasiticus in liquid shake culture. The mycelial dry weight of theA. flavus isolates was not significantly influenced by iturin A, however, there was a significant reduction in mycelial dry weight for two of theA. parasiticus isolates. Aflatoxin production was significantly reduced in five of theA. flavus isolates and three of the six aflatoxigenicA. parasiticus isolates. For the other seven isolates, aflatoxin levels were either unchanged or significantly increased in the presence of iturin A. These results indicate that iturin A does not consistently reduce growth or aflatoxin production of these fungi in pure culture.  相似文献   

6.
Purchase  I. F. H.  Steyn  M.  Emilie Pretorius  H. 《Mycopathologia》1968,35(3-4):239-244
Summary The ability of 44 strains ofA. flavus and 6 strains ofA. parasiticus to produce aflatoxin M on various substrates was examined. It was found that these strains produced aflatoxin M only with larger quantities of aflatoxin B. The presence of several other minor metabolites in culture extracts is described. The highest yield of aflatoxin M was produced by a strain ofA. flavus grown on maize meal.  相似文献   

7.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

8.
The effect of phytate on the production of aflatoxins by Aspergillus parasiticus and Aspergillus flavus grown on synthetic media was examined. In the absence of pH control (initial pH 4.5–6.5) for A. parasiticus, phytate (14.3 mM) caused a six-fold decrease in aflatoxins in the medium and a ten-fold decrease in those retained by the mycelia. When the initial pH of the medium was adjusted to 4.5 no effect on aflatoxin production was observed. With A. flavus or A. parasiticus grown on media with a higher initial pH value (6 to 7), the presence of phytate in the media caused an increase in aflatoxin production. These results are inconsistent with previous studies which indicated that phytate depresses aflatoxin production by rendering zinc, a necessary co-factor for aflatoxin biosynthesis, unavailable to the mold.  相似文献   

9.
Aspergillus flavus and A. parasiticus are the two most important aflatoxin‐producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O‐methylsterigmatocystin, but not CPA. Only four of forty‐five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.  相似文献   

10.
The colony reverse of aflatoxin (AF)-producing strains ofAspergillus flavus andA. parasiticus turned pink when their cultures were exposed to ammonia vapor. The color change was visible for colonies grown on media suitable for AF production such as potato dextrose, coconut, and yeast extract sucrose agars after 2 d incubation at 25°C. Of the 120 strains ofA. flavus, A. parasiticus, and two related species inA. flavus group:A. oryzae andA. sojae tested in this study, only the AF-producing strains ofA. flavus andA. parasiticus showed the pink pigmentation. The color change occurred immediately after the colony was contacted with ammonia vapor. This method was useful for rapid screening the AF-producing strains ofA. flavus andA. parasiticus.  相似文献   

11.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

12.
Summary Lipoperoxidation appears to play a role in inducing aflatoxin biosynthesis. In vitro, synthetic lipoperoxides greatly stimulate aflatoxin production when added to cultures of toxigenic strains of Aspergillus parasiticus or A. flavus. In vivo, the amount of toxin formed in sunflower seeds of different ages inoculated with A. parasiticus is directly related to the peroxide number of their oil content: the higher the peroxide number, the higher the aflatoxin production. In cultures of A. parasiticus carbon tetrachloride (CCl4) greatly stimulates aflatoxin biosynthesis. This effect might be due to the peroxidation of lipids of the endoplasmic reticulum of Aspergillus by the highly reactive CCl . 3 radicals formed by interaction with the NADPH-cytochrome P-450 system.  相似文献   

13.
Intraspecific competition is the basis for biological control of aflatoxins, but there is little understanding of the mechanism(s) by which competing strains inhibit toxin production. Evidence is presented that demonstrates a relationship between strength of the vegetative compatibility reaction and aflatoxin production in Aspergillus flavus and A. parasiticus using the suspended disk culture method. Combining wild-type aflatoxin-producing isolates belonging to different vegetative compatibility groups (VCGs) resulted in a substantial reduction in aflatoxin yield. Pairs of aflatoxin-producing isolates within the same VCG, but showing weak compatibility reactions using complementary nitrate-nonutilizing mutants, also were associated with reduced levels of aflatoxin B1. In contrast, pairings of isolates displaying a strong compatibility reaction typically produced high levels of aflatoxins. These results suggest that interactions between vegetatively compatible wild-type isolates of A. flavus and A. parasiticus are cooperative and result in more aflatoxin B1 than pairings between isolates that are incompatible. Successful hyphal fusions among spore germlings produce a common mycelial network with a larger resource base to support aflatoxin biosynthesis. By comparison, vegetative incompatibility reactions might result in the death of those heterokaryotic cells composed of incompatible nuclei and thereby disrupt the formation of mycelial networks at the expense of aflatoxin biosynthesis. The content of this paper was presented at the 50th Anniversary Meeting of the Mycological Society of Japan, June 3–4, 2006, Chiba, Japan  相似文献   

14.
Peanuts and other seed and grain crops are commonly contaminated with carcinogenic aflatoxins, secondary metabolites produced by Aspergillus flavus and A. parasiticus. Aflatoxin contamination of peanuts in the field can be reduced by 77–98% with biological control through the application of nontoxigenic strains of these species, which competitively exclude native aflatoxin-producing strains from developing peanuts. In this study, viable peanut seeds were artificially wounded and inoculated with field soil containing natural fungal populations that were supplemented with conidia of nontoxigenic A. flavus NRRL 21882 (niaD nitrate-nonutilizing mutant) and A. parasiticus NRRL 21369 (conidial color mutant). Increasing soil densities of applied nontoxigenic strains generally resulted in an increase in the incidence of seed colonization by applied nontoxigenic strains, a decrease in seed colonization by native A. flavus and A. parasiticus, and a decrease in aflatoxin concentration in seeds. Reduction of aflatoxins in peanut seeds depended on both the density and the aflatoxin-producing potential of native populations and on the fungal strain used for biological control. Wild-type strain A. flavus NRRL 21882 and its niaD mutant were equally effective in reducing aflatoxins in peanuts, indicating that nitrate-nonutilizing mutants, which are easily monitored in the field, can be used for evaluating the efficacy of biocontrol strains.  相似文献   

15.
The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene’s function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G1 (AFG1). LC–MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG1. We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG1 from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A. parasiticus strain significantly enhanced the AFG1 formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG1, which required NADPH or NADH, indicating that NADA is a precursor of AFG1; in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG1, the last step in G-aflatoxin biosynthesis.  相似文献   

16.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

17.
An enzyme-linked Immunosorbent assay (ELISA) was used to monitor a total of 153 fungi in theAspergillus flavus group, Including 130A. flavus, 15A. parasiticus and 8A. tamarii, for their ability to produce aflatoxins (AFs) and cyclopiazonic acid (CPA) in a mycologlcal broth-sucrose-yeast extract medium. Of 15A. parasiticus isolates, ten produced AFs In a range of 12.4 to 89.3 μg/vial (average 56.9 μg/vial); two isolates produced only trace amounts of AFs and three isolates produced none at all. Production of CPA was not demonstrated in anyA. parasiticus isolate. On the other hand, all A. tamarii isolates produced only CPA with a range of 310 to 1100 gmg/vial. Fifteen percent (14.6%) of theA. flavus isolates (19/130) produced more than 500 μg CPA/vial, but yielded no or little AF (less than 0.1 μg/vial). About 22.3% ofA. flavus (29/130) that produced less than 500 μg of CPA also yielded little or no aflatoxin. MostA. flavus isolates (44.6%) produced both CPA (50 to 300 μg/vial) and AFs (10 to 40 μg/vial). About 9.2% of theA. flavus are low CPA producers (less than 100 μg/vial) but yielded higher amounts of AFs. A small percentage (12/130 or 9.2%) of A. flavus isolates produced neither CPA nor aflatoxin. Excluding the isolates that produced neither AFs nor CPA, there is a negative correlation between the production of CPA and AFs by most A.flavus isolates. Data obtained from ELISA for the production of CPA were consistent with TLC results. Thus, the ELISA method for CPA and AFB could be applied to the screening of toxigenic fungi. Data on the simultaneous production of both toxins by a large percentage of the toxigenicA. flavus isolates suggest that there is a potential health hazard for co-existence of both toxins in foods and feeds.  相似文献   

18.
Thirty seven strains of the Aspergillus flavus group isolated from animal mixed feeds have been screened for their ability to produce aflatoxins in yeast extract and sucrose (YES), aflatoxin producing ability (APA), and coconut agar medium (CAM) media. The concentration and detection of the aflatoxins by different methods is compared. Five known aflatoxin-positive and one aflatoxin-negative strains have been used as controls. Only 5 out of the 37 strains (13.5%) were aflatoxin-producers in YES medium. Of these five strains and the five known aflatoxin-positive strains, only three showed blue fluorescence in APA medium and four in CAM medium. Generally, the aflatoxin concentration in CAM medium was higher than in YES and APA media. Using the agar-plug method and by direct spotting of the YES broth on TLC plates, some aflatoxin-producing strains were not detected.  相似文献   

19.
A two-year study was conducted to evaluate the efficacy of three formulations of nontoxigenic strains of Aspergillus flavus and Aspergillus parasiticus to reduce preharvest aflatoxin contamination of peanuts. Formulations included: (1) solid-state fermented rice; (2) fungal conidia encapsulated in an extrusion product termed Pesta; (3) conidia encapsulated in pregelatinized corn flour granules. Formulations were applied to peanut plots in 1996 and reapplied to the same plots in 1997 in a randomized design with four replications, including untreated controls. Analysis of soils for A. flavus and A. parasiticus showed that a large soil population of the nontoxigenic strains resulted from all formulations. In the first year, the percentage of kernels infected by wild-type A. flavus and A. parasiticus was significantly reduced in plots treated with rice and corn flour granules, but it was reduced only in the rice-treated plots in year two. There were no significant differences in total infection of kernels by all strains of A. flavus and A. parasiticus in either year. Aflatoxin concentrations in peanuts were significantly reduced in year two by all formulation treatments with an average reduction of 92%. Reductions were also noted for all formulation treatments in year one (average 86%), but they were not statistically significant because of wide variation in the aflatoxin concentrations in the untreated controls. Each of the formulations tested, therefore, was effective in delivering competitive levels of nontoxigenic strains of A. flavus and A. parasiticus to soil and in reducing subsequent aflatoxin contamination of peanuts.  相似文献   

20.
Two strains ofAspergillus flavus Linkex Fr. and two strains ofA. parasiticus Speare were cultured on crushed moist wheat (Triticum durum var. Pané no. 247) for aflatoxin production studies in correlation with morphological changes. The toxicogenic strains were adapted to the substratum by means of successive transfers at regular intervals (72 h.)The amount aflatoxins synthesized by the toxicogenic strains decreased gradually after succesive subculturing. The decrease was accompanied by marked morphological changes. One of the strains studied,A. flavus NRRL 3251, lost completly the capacity of aflatoxin synthesis after several subcultures, presenting at the same time strong morphological variations.A. flavus CBS 120.62 also lost its toxicogenicity after six subcultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号