首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel Polyketide Synthase from Nectria haematococca   总被引:1,自引:0,他引:1       下载免费PDF全文
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: β-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

2.
3.
Cladosporium cladosporioides is a dematiaceous fungus with coloured mycelia and conidia due to the presence of dark pigments. The purpose of this study was to characterize the dark pigments synthetized by Cladosporium sp. LPSC no. 1088 and also to identify the putative polyketide synthase (pks) gene that might be involved in the pigment biosynthesis. Morphological as well as molecular features like the ITS sequence confirmed that LPSC 1088 is Cladosporium cladosporioides. UV-visible, Fourier Transform Infrared (FTIR) and Electron Spin Resonance (ESR) spectroscopy analysis as well as melanin inhibitors suggest that the main dark pigment of the isolate was 1,8 dihydroxynaphthalene (DHN)-melanin-type compound. Two commercial fungicides, Difenoconazole and Chlorothalonil, inhibited fungal growth as well as increased pigmentation of the colonies suggesting that melanin might protect the fungus against chemical stress. The pigment is most probably synthetized by means of a pentaketide pathway since the sequence of a 651?bp fragment, coding for a putative polyketide synthase, is highly homologous to pks sequences from other fungi.  相似文献   

4.
The species of the genus Emericella have been classified and identified on the basis of morphological features. However, the phylogenetic relationships in this genus have not been investigated. To clarify the relationships according to molecular phylogenetics, morphological characteristics, and growth temperature regimens in Emericella, multilocus sequencing analysis based on recent Aspergillus taxonomy was carried out. Various characteristic species formed individual clades, and maximum growth temperature reflected the phylogenetics. Emericella species exhibit various ascospore characteristics, although some species do not have distinct ascospore ornamentation. Species that have smooth-walled ascospores with two equatorial crests are polyphyletic. Here, Emericella pachycristata is described and illustrated as a new species. Its ascospores are similar to those of E. nidulans. These species produce smooth-walled ascospores, but the equatorial crests of E. pachycristata are thicker than those of E. nidulans. On the phylogenetic trees, E. pachycristata is closely related to E. rugulosa, which produces ascospores with ribbed convex surfaces. Thus, E. pachycristata is considered to be a new species both morphologically and phylogenetically.  相似文献   

5.
Serrano A  Losada M 《Plant physiology》1988,86(4):1116-1119
Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes.  相似文献   

6.

Main conclusion

This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3′ hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3′H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.
  相似文献   

7.
8.
The application of the high-producing pigments industrial strain Monascus purpureus SM001 has been greatly limited by the synchronous production of mycotoxin citrinin. Here we have tried both traditional mutagenesis and metabolic engineering methods to eliminate the production of citrinin. Traditional chemical and physical mutagens were applied to induce mutagenesis, and a bio-screening method based on the antibacterial activity of citrinin against Bacillus subtilis was designed to select mutants. Among the resulting four citrinin-free mutants, only mutant MU2411 can maintain the similar pigments yield. A binary vector system was constructed and successfully disrupted the polyketide synthase gene pksCT in M. purpureus SM001 through the Agrobacterium tumefaciens-mediated transformation. The resulting citrinin-free ΔpksCT mutants maintained the same level of pigments yield. The established Monascus genetic system was comprehensively evaluated and showed high efficiency and specificity, which provides us a potential approach to manipulate and improve industrial Monascus strains.  相似文献   

9.
红曲色素是天然安全的色素和防腐剂,根据代谢数据库选择了6种代谢途径关键酶的抑制剂,在基本培养基中考察这些抑制剂对红曲霉生长和合成色素的影响。甲羟戊酸合成途径的抑制剂邻氨基苯甲酸和3,4-二羟苯甲酸对红曲霉生长和色素生物合成都没有影响;莽草酸途径关键酶氨基苯甲酸合成酶的抑制剂三甲胺不抑制红曲霉的生长和色素的合成。在不影响红曲霉生长的浓度范围内,聚酮途径中β-酮酯酰-ACP合成酶的专性抑制剂碘乙酰胺(0.5mmol/L)抑制红曲色素合成程度达64.7%,非专性抑制剂咪唑(1mmol/L)抑制幅度达60%,聚酮途径硫酯酶的抑制剂2,4-二硝基氟苯(0.5mmol/L)强烈抑制红曲霉合成色素的活性,抑制程度达91.5%。相关酶活抑制的试验数据显示红曲霉可能经过聚酮途径合成红曲色素。  相似文献   

10.
Genome sequencing of Aspergillus species including Aspergillus nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites, which have not yet been elucidated. The A. nidulans genome contains 12 nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/NRPS, and 14 NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA, which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in Aspergillus niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.  相似文献   

11.
12.
Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.  相似文献   

13.
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: beta-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

14.
15.
Lysobacter are ubiquitous environmental bacteria emerging as novel biocontrol agents and new sources of anti-infectives. So far, very little effort has been invested in the study of the biology of these Gram-negative gliding bacteria. Many Lysobacter species are characterized by their yellow-orange appearance. Using transposon mutagenesis, we identified a stand-alone polyketide synthase (PKS) gene cluster required for the pigment production in L. enzymogenes OH11. The yellow pigments were abolished in the “white” mutants generated by target-specific deletions of ketosynthase (KS), acyl carrier protein, or ketoreductase. Spectroscopic data suggested that the pigments belong to xanthomonadin-like aryl polyenes. Polyene-type polyketides are known to be biosynthesized by modular PKS (Type I), not by stand-alone PKS (Type II) which always contain the heterodimer KS-CLF (chain-length factor) as the key catalytic component. Remarkably, this aryl polyene PKS complex only contains the KS (ORF17), but not the CLF. Instead, a hypothetical protein (ORF16) is located immediately next to ORF17. ORF16–17 homologs are widespread in numerous uncharacterized microbial genomes, in which an ORF17 homolog is always accompanied by an ORF16 homolog. The deletion of ORF16 eliminated pigment production, and homology modeling suggested that ORF16 shares a structural similarity to the N-terminal half of CLF. A point-mutation of glutamine (Q166A) that is the conserved active site of known CLF abolished pigment production. The “white” mutants are significantly more sensitive to UV/visible light radiation or H2O2 treatment than the wild type. These results unveil the first example of Type II PKS-synthesized polyene pigments and show that the metabolites serve as Lysobacter “sunscreens” that are important for the survival of these ubiquitous environmental organisms.  相似文献   

16.
To access the genetic and biochemical potential of soil microorganisms by culture-independent methods, a 24,546-member library in Escherichia coli with DNA extracted directly from soil had previously been constructed (M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, M. S. Osburne, J. Clardy, J. Handelsman, and R. M. Goodman, Appl. Environ. Microbiol. 66:2541-2547, 2000). Three clones, P57G4, P89C8, and P214D2, produced colonies with a dark brown melanin-like color. We fractionated the culture supernatant of P57G4 to identify the pigmented compound or compounds. Methanol extracts of the acid precipitate from the culture supernatant contained a red and an orange pigment. Structural analysis revealed that these were triaryl cations, designated turbomycin A and turbomycin B, respectively; both exhibited broad-spectrum antibiotic activity against gram-negative and gram-positive organisms. Mutagenesis, subcloning, and sequence analysis of the 25-kb insert in P57G4 demonstrated that a single open reading frame was necessary and sufficient to confer production of the brown, orange, and red pigments on E. coli; the predicted product of this sequence shares extensive sequence similarity with members of the 4-hydroxyphenylpyruvate dioxygenase (4HPPD) family of enzymes. Another member of the same family of genes, lly, which is required for production of the hemolytic pigment in Legionella pneumophila, also conferred production of turbomycin A and B on E. coli. We further demonstrated that turbomycin A and turbomycin B are produced from the interaction of indole, normally secreted by E. coli, with homogentisic acid synthesized by the 4HPPD gene products. The results demonstrate successful heterologous expression of DNA extracted directly from soil as a means to access previously uncharacterized small organic compounds, serving as an example of a chimeric pathway for the generation of novel chemical structures.  相似文献   

17.

Background  

Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis.  相似文献   

18.
19.
Mycelia of Gibberella zeae (anamorph, Fusarium graminearum), an important pathogen of cereal crops, are yellow to tan with white to carmine red margins. We isolated genes encoding the following two proteins that are required for aurofusarin biosynthesis from G. zeae: a type I polyketide synthase (PKS) and a putative laccase. Screening of insertional mutants of G. zeae, which were generated by using a restriction enzyme-mediated integration procedure, resulted in the isolation of mutant S4B3076, which is a pigment mutant. In a sexual cross of the mutant with a strain with normal pigmentation, the pigment mutation was linked to the inserted vector. The vector insertion site in S4B3076 was a HindIII site 38 bp upstream from an open reading frame (ORF) on contig 1.116 in the F. graminearum genome database. The ORF, designated Gip1 (for Gibberella zeae pigment mutation 1), encodes a putative laccase. A 30-kb region surrounding the insertion site and Gip1 contains 10 additional ORFs, including a putative ORF identified as PKS12 whose product exhibits about 40% amino acid identity to the products of type I fungal PKS genes, which are involved in pigment biosynthesis. Targeted gene deletion and complementation analyses confirmed that both Gip1 and PKS12 are required for aurofusarin production in G. zeae. This information is the first information concerning the biosynthesis of these pigments by G. zeae and could help in studies of their toxicity in domesticated animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号