首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis. [BMB Reports 2015; 48(1): 48-53]  相似文献   

2.
CD36, belongs to class B scavenger receptor family, is a macrophage receptor for oxidized low-density lipoprotein (oxLDL) and has been proven to play a critical role in atherosclerotic foam cell formation. In addition, CD36 expression is regulated by many factors including oxLDL and HDL. A recent study suggests that CD36 can also bind with oxidized high-density lipoprotein (oxHDL). However, the direct role of oxHDL in atherosclerosis is still not clear and it is not known whether oxHDL has any influence on the expression of CD36 in macrophages. Here, we performed experiments to investigate the effect of oxHDL on the expression of CD36 on human peripheral blood monocytes–macrophages and the possible mechanisms. Our results suggest that the uptake of oxHDL by CD36 on macrophages accelerates foam cell formation. In addition, oxHDL can down-regulate both the mRNA and surface protein expression of CD36 on human peripheral macrophages in vitro. oxHDL increased the mRNA expression and protein phosphorylation of peroxisome proliferators-activated receptor-γ (PPARγ). Using different mitogen-activated protein kinase (MAPK) inhibitors, we demonstrated that oxHDL regulated CD36 and PPARγ expression in a p38-MAP kinase dependent mechanism.  相似文献   

3.
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL.  相似文献   

4.
In this study we show that protein tyrosine kinases (PTKs) and also protein tyrosine phosphatases are involved in the uptake of virulent and avirulent Leishmania donovani promastigotes by macrophage cells. Protein tyrosine kinase inhibitors such as genistein or tyrphostin 25 decrease parasite uptake in a dose-dependent manner. Addition of sodium orthovanadate, a protein tyrosine phosphatase inhibitor, prior to infection significantly increases parasite internalization. A similar uptake profile was observed with both virulent and avirulent L. donovani promastigotes. Treatment of macrophages with cytochalasin B, an inhibitor of actin polymerization prevents promastigote uptake, indicating that a tyrosine kinase induced actin polymerization signal may be necessary for the entry of the parasites. In contrast, neither genistein nor tyrphostin significantly reduce intracellular replication of this pathogen or nitric oxide production, suggesting that the PTK-mediated signal is not related to the ultimate virulence mechanism associated with intracellular replication of this pathogen. These data collectively suggest that protein tyrosine kinase mediated entry of L. donovani promastigotes into macrophages is not a virulence-associated event.  相似文献   

5.
Atherosclerosis, a chronic inflammatory disease, results in part from the accumulation of modified lipoproteins in the arterial wall and formation of lipid-laden macrophages, known as "foam cells." Recently, we reported that CD36, a scavenger receptor, contributes to activation of Vav-family guanine nucleotide exchange factors by oxidatively modified LDL in macrophages. We also discovered that CD36-dependent uptake of oxidized LDL (oxLDL) in vitro and foam cell formation in vitro and in vivo was significantly reduced in macrophages deficient of Vav proteins. The goal of the present study was to identify the mechanisms by which Vav proteins regulate CD36-dependent foam cell formation. We now show that a Vav-dynamin signaling axis plays a critical role in generating calcium signals in mouse macrophages exposed to CD36-specific oxidized phospholipid ligands. Chelation of intracellular Ca(2+) or inhibition of phospholipase C-γ (PLC-γ) inhibited Vav activation (85 and 70%, respectively, compared with vehicle control) and reduced foam cell formation (approximately 75%). Knockdown of expression by siRNA or inhibition of GTPase activity of dynamin 2, a Vav-interacting protein involved in endocytic vesicle fission, significantly blocked oxLDL uptake and inhibited foam cell formation. Immunofluorescence microscopy studies showed that Vav1 and dynamin 2 colocalized with internalized oxLDL in macrophages and that activation and mobilization of dynamin 2 by oxLDL was impaired in vav null cells. These studies identified previously unknown components of the CD36 signaling pathway, demonstrating that Vav proteins regulate oxLDL uptake and foam cell formation via calcium- and dynamin 2-dependent processes and thus represent novel therapeutic targets for atherosclerosis.  相似文献   

6.
Macrophages are believed to play a crucial role in atherogenesis and atherosclerotic plaque progression, mainly through their role in the accumulation of large amounts of cholesteryl ester and foam cell formation after the uptake into the arterial intima of oxidized LDL (oxLDL) particles known to be proatherogenic. The aim of this study was to use a differential proteomic approach to identify the response of human monocyte-derived macrophages after treatment with oxLDL for 24 h. Mass spectrometry analysis (MALDI-TOF) of 2D-DIGE gels made it possible to identify 9 intracellular and 3 secreted proteins that were up-regulated, 11 intracellular and 1 secreted proteins that were down-regulated, and 2 secreted proteins that were induced. This methodological approach not only confirmed the differential expression levels of proteins known to be regulated by oxLDL in macrophages, such as catalase and pyruvate kinase, but also identified oxLDL modulation of other proteins for the first time, including heat shock proteins (HSP) and Actin cytoskeletal proteins. Semiquantitative Western blot confirmed their role. The HSPs identified included heat shock cognate 71 kDa protein (Hsc70), 75 kDa glucose-regulated protein (GRP75), heat shock 70 kDa protein (Hsp70), and 60 kDa (Hsp60) proteins. These highly conserved intracellular protein chaperones, commonly seen in atherosclerotic plaques, appear to participate in protection against cellular stress. Interestingly, oxLDL also modulated several F-Actin capping proteins involved in Actin polymerization and motility: gelsolin, CapG, and CapZ. In conclusion, we have demonstrated the effects of oxLDL in the modulation of several proteins in human macrophages and established a functional profile of the human macrophage during the atherosclerotic process.  相似文献   

7.
Increased levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) coexist in atherosclerotic lesions but their relationship in atherogenesis is unclear. This study investigated the role of 5-LO in HNE-induced CD36 expression and macrophage foam cell formation, and the link between HNE and 5-LO. In J774A.1 murine macrophages, HNE (10 μM) enhanced CD36 expression in association with an increased uptake of oxLDL, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor, or with 5-LO siRNA. In peritoneal macrophages from 5-LO-deficient mice, HNE-induced CD36 expression was markedly attenuated, confirming a pivotal role of 5-LO in HNE-induced CD36 expression. In an assay for 5-LO activity, stimulation of macrophages with HNE led to increased leukotriene B4 production in the presence of exogenous arachidonic acid in association with an increased association of 5-LO to the nuclear membrane. Among the mitogen-activated protein kinase (MAPK) pathways involved in 5-LO phosphorylation, HNE predominantly activated p38 MAPK in macrophages, and the p38 MAPK inhibitor SB203580, but not an extracellular signal-regulated kinase inhibitor, suppressed HNE-induced LTB4 production. Collectively, these data suggest that p38 MAPK-mediated activation of 5-LO by HNE might enhance CD36 expression, consequently leading to the formation of macrophage foam cells.  相似文献   

8.
Macrophages recognize oxidatively damaged autologous erythrocytes, and cell surface fibronectin of macrophages enhances the recognition (Beppu et al., FEBS Lett. 295 (1991) 135-140). In the present study, mechanisms of enhanced macrophage recognition of oxidatively damaged erythrocytes by fibronectin were investigated. Monolayers of thioglycollate-induced mouse peritoneal macrophages with cell surface fibronectin recognized autologous erythrocytes oxidized with an iron catalyst ADP/Fe(3+). The macrophage recognition of the oxidized erythrocytes was inhibited partially by pretreatment of the macrophage monolayers with a Ca(2+) channel blocker (diltiazem), calmodulin inhibitors (W-7, trifluoperazine, chlorpromazine and dibucaine), an inhibitor of myosin light chain kinase (ML-9), a microfilament formation inhibitor (cytochalasin B), phospholipase A(2) inhibitors (4-bromophenacyl bromide, mepacrine) and cyclooxygenase inhibitors (indomethacin and aspirin). Monolayers of macrophages depleted of fibronectin by trypsinization lost the ability of recognizing oxidized erythrocytes, but acquired the ability when stimulated with a fibronectin-coated coverslip. The recognition of fibronectin-stimulated trypsinized macrophages was also inhibited by the above inhibitors. On treatment with Ca ionophore A23187, trypsinized macrophages acquired the ability to recognize oxidized erythrocytes. The recognition of Ca ionophore-stimulated trypsinized macrophages was inhibited by the above inhibitors except the Ca(2+) channel blocker. These results indicate that the Ca(2+) signaling including Ca(2+) influx, calmodulin activation and myosin light chain phosphorylation are involved in the fibronectin stimulation of the recognition of macrophages for oxidized erythrocytes. Involvement of microfilament formation and arachidonate cascade in the fibronectin stimulation was also suggested.  相似文献   

9.
SIRPbeta (signal-regulatory protein beta) is a transmembrane protein that is expressed in hematopoietic cells but whose functions are unknown. We have now cloned mouse SIRPbeta cDNA and have shown that the gene is expressed in various tissues in addition to cells of the macrophage lineage. Engagement of SIRPbeta by specific monoclonal antibodies promoted Fcgamma receptor-dependent or -independent phagocytosis in mouse peritoneal macrophages. It also induced marked activation of MAPK and the upstream kinase MEK but weak activation of Akt. MEK inhibitors markedly blocked the promotion of phagocytosis by SIRPbeta, whereas an inhibitor of phosphoinositide 3-kinase partly blocked such response. In addition, inhibitors of myosin light chain kinase or of myosin ATPase blocked the promotion of phagocytosis by SIRPbeta. Furthermore, SIRPbeta induced the formation of filopodia and lamellipodia in macrophages as well as the translocation of activated MAPK to these structures. It also elicited tyrosine phosphorylation of DAP12, Syk, and SLP-76, and a Syk inhibitor blocked the promotion of phagocytosis and activation of MAPK by SIRPbeta. Our results suggest that engagement of SIRPbeta promotes phagocytosis in macrophages by inducing the tyrosine phosphorylation of DAP12, Syk, and SLP-76 and the subsequent activation of a MEK-MAPK-myosin light chain kinase cascade.  相似文献   

10.
Macrophage foam cell formation (FCF) has long been known to play a critical role during atherosclerotic plaque development. In the presence of atherogenic molecules such as oxidized low-density lipoprotein (oxLDL) macrophages accumulate massive amounts of lipid through uptake. However, in the presence of oxLDL mechanism of dysregulated lipid homeostasis in the macrophages remains largely unknown. Herein we have investigated the role of Sterol regulatory element binding protein (SREBP)-1 in oxLDL-induced inflammation and altered lipid homeostasis in macrophages. The U937 monocytes and monocyte-derived macrophages (MDMs) were stimulated with different doses of oxLDL. MTT assay to study the effect of oxLDL on cell viability, Oil-Red-O (ORO) staining to observe cytosolic lipid accumulation, semi-quantitative PCR and Western blotting to analyze mRNA and protein expressions, respectively, and spectrophotometric assay to measure the lipid synthesizing enzyme's activity were performed. Our results indicate that oxLDL increased proliferation in monocytes and decreased the viability in MDMs in a time- and dose-dependent manner. The oxLDL (100 μg/ml) enhanced lipid accumulation via increased expressions of SREBP-1 and its downstream proteins such as fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) at both RNA and protein levels in monocytes as well as in MDMs. Inhibiting SREBP-1 by a synthetic inhibitor prevented excessive lipid accumulation by downregulating the expression of its downstream proteins. Further, oxLDL increased reactive oxygen species (ROS) levels, NLRP3 inflammasome activation and active interleukin 1β (IL-1β) release in both the cell types. The oxLDL-induced NLRP3 could be responsible for SREBP-1 and downstream proteins overexpression as siRNA silencing of NLRP3 decreased SERBP-1 levels. In summary, we have demonstrated that SREBP-1 could be a key player in oxLDL-induced excessive lipid accumulation leading to macrophage FCF via ROS-mediated NLRP3/IL-1β/SREBP-1 pathway.  相似文献   

11.
Lipid-laden macrophages or "foam cells" are the primary components of the fatty streak, the earliest atherosclerotic lesion. Although Vav family guanine nucleotide exchange factors impact processes highly relevant to atherogenesis and are involved in pathways common to scavenger receptor CD36 signaling, their role in CD36-dependent macrophage foam cell formation remains unknown. The goal of the present study was to determine the contribution of Vav proteins to CD36-dependent foam cell formation and to identify the mechanisms by which Vavs participate in the process. We found that CD36 contributes to activation of Vav-1, -2, and -3 in aortae from hyperlipidemic mice and that oxidatively modified LDL (oxLDL) induces activation of macrophage Vav in vitro in a CD36 and Src family kinase-dependent manner. CD36-dependent uptake of oxLDL in vitro and foam cell formation in vitro and in vivo was significantly reduced in Vav null macrophages. These studies for the first time link CD36 and Vavs in a signaling pathway required for macrophage foam cell formation.  相似文献   

12.
Accumulation of foam cells in the neointima represents a key event in atherosclerosis. We previously demonstrated that Tanshinone IIA (Tan), a lipophilic bioactive compound extracted from Salvia miltiorrhiza Bunge, inhibits experimental atherogenesis, yet the detailed mechanisms are not fully understood. In this study, we sought to explore the potential effects of Tan on lipid accumulation in macrophage foam cells and the underlying molecular mechanisms. Our data indicate that Tan treatment reduced the content of macrophages, cholesterol accumulation, and the development of atherosclerotic plaque in apolipoprotein E-deficient mice. In human macrophages, Tan ameliorated oxidized low density lipoporotein (oxLDL)-elicited foam cell formation by inhibiting oxLDL uptake and promoting cholesterol efflux. Mechanistically, Tan markedly reduced the expression of scavenger receptor class A and increased the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 in lipid-laden macrophages via activation of the extracellular signal-regulated kinase (ERK)/nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Tan treatment induced the phosphorylation and nuclear translocation of Nrf2 and subsequently increased the expression of HO-1, and these effects were abolished by the specific ERK inhibitors, PD98059 and U0126. Moreover, HO-1 small interfering RNA or zinc protoporphyrin (a HO-1 inhibitor) abrogated Tan-mediated suppression of lipid accumulation in macrophages. Our current findings demonstrate that a novel HO-1-dependent mechanism is involved in the regulation of cholesterol balance by Tan.  相似文献   

13.
The transformation of macrophages into foam cells is a critical event in the development of atherosclerosis. The most studied aspect of this process is the uptake of modified LDL through the scavenger receptors. Another salient aspect is the effect of modified LDL immune complexes on macrophages activation and foam cell formation. Macrophages internalize oxidized LDL immune complexes (oxLDL-IC) via the Fc-gamma receptor and transform into activated foam cells. In this study we examined the effect of oxLDL-IC on sphingosine kinase 1 (SK1), an enzyme implicated in mediating pro-survival and inflammatory responses through the generation of the signaling molecule sphingosine-1-phosphate (S1P). Intriguingly, oxLDL-IC, but not oxLDL alone, induced an immediate translocation and release of SK1 into the conditioned medium as evidenced by fluorescence confocal microscopy. Immunoblot analysis of cell lysates and conditioned medium revealed a decrease in intracellular SK1 protein levels accompanied by a concomitant increase in extracellular SK1 levels. Furthermore, measurement of S1P formation showed that the activity of cell-associated SK decreased in response to oxLDL-IC compared to oxLDL alone, whereas the activity of SK increased extracellularly. Blocking oxLDL-IC binding to Fc-gamma receptors resulted in decreased levels of extracellular S1P. The data also show that cell survival of human U937 cells exposed to oxLDL-IC increased compared to oxLDL alone. Exogenously added S1P further increased cell survival induced by oxLDL-IC. Taken together, these findings indicate that S1P may be generated extracellularly in response to modified LDL immune complexes and may therefore promote cell survival and prolong cytokine release by activated macrophages.  相似文献   

14.
《The Journal of cell biology》1996,135(6):1471-1483
Recent evidence suggests that secretory vesicle formation from the TGN is regulated by cytosolic signaling pathways involving small GTP- binding proteins, heterotrimeric G proteins, inositol phospholipid metabolism, and protein serine/threonine phosphorylation. At the cell surface, protein phosphorylation and dephosphorylation on tyrosine residues can rapidly modulate cytosolic signaling pathways in response to extracellular stimuli and have been implicated in the internalization and sorting of signaling receptors. to determine if phosphotyrosine metabolism might also regulate secretory vesicle budding from the TGN, we treated permeabilized rat pituitary GH3 cells with inhibitors of either tyrosine phosphatases or tyrosine kinases. We demonstrate that the tyrosine phosphatase inhibitors pervanadate and zinc potently inhibited budding of nascent secretory vesicles. Tyrphostin A25 (TA25) and other tyrosine kinase inhibitors also prevented secretory vesicle release, suggesting that vesicle formation requires both phosphatase and kinase activities. A stimulatory peptide derived from the NH2 terminus of the small GTP-binding protein ADP ribosylation factor 1 (ARF1) antagonized the inhibitory effect of TA25, indicating that both agents influence the same pathway leading to secretory vesicle formation. Antiphosphotyrosine immunoblotting revealed that protein tyrosine phosphorylation was enhanced after treatment with tyrosine phosphatase or kinase inhibitors. Subcellular fractionation identified several tyrosine phosphorylated polypeptides of approximately 175, approximately 130, and 90-110 kD that were enriched in TGN-containing Golgi fractions and tightly membrane associated. The phosphorylation of these polypeptides correlated with inhibition of vesicle budding. Our results suggest that in endocrine cells, protein tyrosine phosphrylation and dephosphorylation are required for secretory vesicle release from the TGN.  相似文献   

15.
16.
4-Hydroxynonenal (HNE) is known to be atherogenic, but its mechanism of action in atherogenesis is not clear. Therefore, this study investigated the role of HNE in macrophage foam cell formation and the underlying mechanism involved in HNE-induced expression of scavenger receptors (SRs). In the aortic sinus of ApoE-deficient mice fed a high-fat diet, multiple plaque lesions were accompanied by increased accumulation of HNE adducts in the enhanced Mac-2 stained area. In an in vitro study, HNE exposure to J774A.1 macrophages led to increased expression of class A SR (SR-A) and CD36 at the protein level with a concomitant increase in endocytic uptake of oxLDL. In contrast to CD36 protein expression, which was associated with an increase in mRNA expression, the HNE-enhanced SR-A protein expression was neither accompanied by its mRNA expression nor affected by actinomycin D. HNE enhanced the incorporation rates of 35S-Met/Cys into SR-A, and HNE-induced SR-A protein expression was effectively attenuated by translation inhibitors such as cycloheximide and rapamycin. Taken together, these data suggest that HNE contributes to macrophage foam cell formation through increased synthesis of SR-A at the level of mRNA translation, consequently leading to the progression of atherosclerosis.  相似文献   

17.
Xu S  Huang Y  Xie Y  Lan T  Le K  Chen J  Chen S  Gao S  Xu X  Shen X  Huang H  Liu P 《Cytotechnology》2010,62(5):473-481
Macrophage-derived foam cell formation elicited by oxidized low-density lipoprotein (oxLDL) is the hallmark of early atherogenesis. Detection of foam cell formation is conventionally practiced by Oil Red O (ORO) staining of lipid-laden macrophages. Other methods include 1,1′-dioctadecyl-3,3,3′3′-tetra-methylindocyanide percholorate (DiI)-labeled oxLDL (DiI-oxLDL) uptake and Nile Red staining. The purpose of the present study is to report an optimized method for assessing foam cell formation in cultured macrophages by ORO staining and DiI-oxLDL uptake. After incubation with oxLDL (50 μg/ml) for 24 h, the macrophages were fixed, stained with ORO for just 1 min, pronounced lipid droplets were clearly observed in more than 90% of the macrophages. To test the in vivo applicability of this method, lesions (or foam cells) of cryosections of aortic sinus or primary mouse peritoneal macrophages from ApoE deficient mice fed a high cholesterol diet were successfully stained. In another set of experiments, treatment of macrophages with DiI-oxLDL (10 μg/ml) for 4 h resulted in significant increase in oxLDL uptake in macrophages as demonstrated by confocol microscopy and flow cytometry. We conclude that the optimized ORO staining and fluorescent labeled oxLDL uptake techniques are very useful for assessing intracellular lipid accumulation in macrophages that are simpler and more rapid than currently used methods.  相似文献   

18.
CD36 signal transduction modulates the uptake of oxidized low-density lipoprotein (oxLDL) and foam cell formation. We previously observed that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1), the lipid moiety of oxLDL, activates the CD36-Src-JNK/ERK1/2 signalling pathway. In this study, we assessed the role of the ω-carboxyl group in the binding of oxLig-1 to CD36 and investigated whether the binding of the ω-carboxyl group to CD36 triggers CD36-mediated signalling, thereby resulting in the upregulation of caveolin-1 expression. Our results showed that oxLig-1 bound to CD36 and that the ω-carboxyl group was critical for this binding. Furthermore, immunoprecipitation and Western blot analyses showed that interaction between the ω-carboxyl group of oxLig-1 and CD36 triggered intracellular Src-JNK/ERK1/2 signal transduction. Moreover, the binding of the ω-carboxyl group to CD36 induced caveolin-1 expression and translocation to the membrane in macrophages. Additionally, inhibitors of Src, JNK and ERK and siRNA targeting CD36 and NF-κB significantly suppressed the enhanced caveolin-1 expression induced by oxLig-1. In conclusion, these observations suggest that oxLig-1 is a critical epitope of oxLDL that mediates the binding of oxLDL to CD36 and activates downstream Src-JNK/ERK1/2-NF-κB signal transduction, resulting in upregulation of caveolin-1 expression in macrophages.  相似文献   

19.
We found thatTrypanosoma cruzitrypomastigote cloned surface ligand (gp83 trans-sialidase) signals human macrophages to up-regulate parasite entry by inducing tyrosine phosphorylation of MAP kinase. Pre-incubation of human macrophages with r-gp83 trans-sialidase significantly enhanced both the percentage of phagocytosed trypanosomes and the number of trypanosomes per cell in a concentration dependent fashion. Incubation of r-gp83 with macrophages induced tyrosine phosphorylation of several macrophage proteins. This enhancement was inhibited by genistein, a tyrosine kinase inhibitor. The r-trypanosome ligand enhanced tyrosine phosphorylation of ERK1 and this enhancement was specifically inhibited by the inhibitor of MAP kinase phosphorylation, PD 98059, or by genistein. PD 98050 or genistein also inhibited the enhancement of trypomastigote uptake by macrophages induced by the r-ligand. These results indicate thatT. cruziuses a novel mechanism to signal cells in the process of trypanosome entry, via a secreted trypanosome ligand which signals macrophages through the MAP kinase pathway.  相似文献   

20.
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号