首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycoprotein hormone, human chorionic gonadotropin (hCG), contains both N- and O-linked oligosaccharide chains linked to its beta-subunit. Using the human choriocarcinoma cell line, BeWo, we have examined the temporal relationship between N- and O-glycosylation of hCG and the subsequent processing of both types of oligosaccharide chains. The results indicate that, as observed in related cell lines, mature, completely glycosylated forms of the subunits of hCG cannot be detected intracellularly in BeWo cells during pulse-chase experiments with [35S]methionine. To more directly study the temporal relationship between N- and O-glycosylation of hCG in BeWo cells, 14C-amino acids and [3H]glucosamine (which also serves as a precursor to N-acetylgalactosamine) were used to label hCG. The results of these studies are consistent with a model for the N- and O-glycosylation of hCG in which 1) N-glycosylation of hCG occurs co-translationally or very shortly after translation, and 2) the addition of O-linked GalNAc residues to the polypeptide and the addition of peripheral GlcNAc residues to the N-linked oligosaccharide chains occur just prior to secretion, presumably in the Golgi complex.  相似文献   

2.
N-Linked glycosylation is a post-translational event whereby carbohydrates are added to secreted proteins at the consensus sequence Asn-Xaa-Ser/Thr, where Xaa is any amino acid except proline. Some consensus sequences in secreted proteins are not glycosylated, indicating that consensus sequences are necessary but not sufficient for glycosylation. In order to understand the structural rules for N-linked glycosylation, we introduced N-linked consensus sequences by site-directed mutagenesis into the polypeptide chain of the recombinant human erythropoietin molecule. Some regions of the polypeptide chain supported N-linked glycosylation more effectively than others. N-Linked glycosylation was inhibited by an adjacent proline suggesting that sequence context of a consensus sequence could affect glycosylation. One N-linked consensus sequence (Asn123-Thr125) introduced into a position close to the existing O-glycosylation site (Ser126) had an additional O-linked carbohydrate chain and not an additional N-linked carbohydrate chain suggesting that structural requirements in this region favored O-glycosylation over N-glycosylation. The presence of a consensus sequence on the protein surface of the folded molecule did not appear to be a prerequisite for oligosaccharide addition. However, it was noted that recombinant human erythropoietin analogs that were hyperglycosylated at sites that were normally buried had altered protein structures. This suggests that carbohydrate addition precedes polypeptide folding.  相似文献   

3.
In human fibroblasts, the receptor for low density lipoprotein (LDL) is synthesized as a precursor of apparent Mr = 120,000 which is converted to a mature form of apparent Mr = 160,000, as determined by migration in sodium dodecyl sulfate (SDS)-polyacrylamide gels (Tolleshaug, H., Goldstein, J. L., Schneider, W. J., and Brown, M. S. (1982) Cell 30, 715-724). The current paper describes the relationship of N- and O-glycosylation to this post-translational modification. Oligosaccharides were analyzed from precursor and mature forms of LDL receptors that had been immunoprecipitated from cells grown in media containing radioactive sugars. In human epidermoid carcinoma A-431 cells, the receptor precursor appears to contain one N-linked high mannose oligosaccharide and approximately 6-9 N-acetylgalactosamine residues linked O-glycosidically to Ser/Thr residues. In the mature receptor, the O-linked oligosaccharides are mono- and disialylated species having the core structure of galactose leads to N-acetylgalactosamine leads to Ser/Thr. The single N-linked oligosaccharide of the mature receptor can either be a tri- or tetraantennary complex-type species. Similar results were obtained with normal human fibroblast receptor except that the O-linked oligosaccharides on the precursor are neutral disaccharides, of which one component is GalNAc and the N-linked complex type unit on the mature receptor is less branched. Since the addition of GalNAc residues to Ser/Thr residues precedes the conversion of N-linked high mannose-type oligosaccharides to complex-type structures, the transfer of N-acetylgalactosamine must occur prior to the entry of glycoproteins into the region of the Golgi containing the processing enzyme alpha-mannosidase I. We also studied the receptor from tunicamycin-treated cells and after treatment with neuraminidase. In addition, we analyzed the receptor synthesized by a lectin-resistant clone of Chinese hamster ovary cells that is deficient in adding galactose residues to both N- and O-linked oligosaccharides. These studies suggest that the apparent differences in molecular weight between the precursor and mature forms of the LDL receptor are largely, if not entirely, due to the addition of sialic acid and galactose residues to the O-linked GalNAc residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Biogenesis of glycophorin A in K562 human erythroleukemia cells   总被引:1,自引:0,他引:1  
A monoclonal antibody (mAb-233) directed against an epitope in the nonglycosylated carboxyl-terminal region of human erythrocyte glycophorin A (GPA) was used in combination with metabolic labeling, the modification of N- and O-linked oligosaccharide processing by tunicamycin and monensin, and digestions with neuraminidase and O-glycanase to elucidate the pathway of GPA biogenesis in K562 human erythroleukemia cells. Cell-surface GPA is derived from two obligatory precursors in a stepwise manner. The initial GPA precursor has a Mr of 27,000 and appears to contain one N-linked high mannose oligosaccharide chain. In tunicamycin-treated cells, the initial precursor is similar in size (Mr = 24,000) to deglycosylated GPA from human erythrocytes. The 27-kDa initial precursor is rapidly converted to a transient 31-kDa intermediate by the addition of N-acetylgalactosamine residues to serine/threonine hydroxyl groups. Subsequent maturation involves the conversion of the high mannose chain to a complex-type oligosaccharide and the concomitant addition of galactose and sialic acid to internal N-acetylgalactosamine residues to extend the O-linked chains. These results define a single, stepwise processing pathway for the generation of all cell-surface GPA molecules and document for the first time the occurrence of both a unique initial precursor that contains a high mannose N-linked oligosaccharide chain but no O-linked sugars and a transient intermediate that appears to contain the same N-linked group and N-acetylgalactosamine at multiple serine/threonine residues. The properties of the intracellular GPA precursors and the relatively simple nature of the processing pathway reported herein contrast markedly with the characteristics of three intermediates and the complexity of two independent pathways in previously postulated schemes for GPA biogenesis (Gahmberg, C. G., Jokinen, M., Karhi, K. K., Kampe, O., Peterson, P. A., and Andersson, L. C. (1983) Methods Enzymol. 96, 281-298; Jokinen, M., Andersson, L. C., and Gahmberg, C. G. (1985) J. Biol. Chem. 260, 11314-11321).  相似文献   

5.
N-glycosylation is the most conserved form of protein glycosylation in eukaryotes, but the modifications of N-linked oligosaccharides in plants and invertebrates often differ greatly from those in vertebrates and sometimes result in immunogenic structures. By contrast, O-linked glycans tend to be a wide and disparate group of modifications. Whereas the forms of O-linked glycans in plants are unlike those in animals, studies on invertebrate O-glycosylation often yield information relevant to mammalian systems.  相似文献   

6.
It has been previously shown that glucose transporter Glut-1 expression was detectable by immunostaining in tissue sections from anaplastic carcinoma, but not in normal thyroid tissue. Using human thyroid anaplastic carcinoma cells, we studied the mechanism by which Glut-1 molecules are translocated from the endoplasmic reticulum to the cell surface. The contribution of N- and O-linked glycans for the translocation and activity of Glut-1 transporter is emphasized. The inhibition of N-glycosylation with tunicamycin (TM) led to a 50% decrease in glucose transport while glycosylated and unglycosylated forms of Glut-1 were found at the cell surface. However, the inhibition of N-linked oligosaccharide processing with deoxymannojirimycin (dMJ) and swainsonine (SW) influenced neither the intracellular trafficking nor the activity of the transporter. On the other hand, Glut-1 bound to the O-linked glycan-specific lectin jacalin and the O-glycosylation inhibitor benzyl-N-acetylgalactosamine dramatically inhibited glucose transport. These results show that O- and N-linked oligosaccharides arbored by Glut-1 are essential for glucose transport in anaplastic carcinoma cells. The quantitative and qualitative alterations of Glut-1 glycosylation and the increase in glucose transport are associated with the anaplastic phenotype of human thyroid cells.  相似文献   

7.
《The Journal of cell biology》1994,126(4):1099-1109
GP85 is one of the most common hemopoietic isoforms of the cell adhesion molecule, CD44. CD44(GP85) is known to contain at least one ankyrin-binding site within its 70 aa cytoplasmic domain and to bind hyaluronic acid (HA) with its extracellular domain. In this study we have mapped the ankyrin-binding domain of CD44(GP85) by deleting various portions of the cytoplasmic region followed by expression of these truncated cDNAs in COS cells. The results of these experiments indicate that the ankyrin-binding domain resides between amino acids 305 and 355. Biochemical analyses, using competition binding assays and a synthetic peptide (NGGNGT-VEDRKPSEL) containing 15 aa between aa 305 and aa 320, support the conclusion that this region is required for ankryin binding. Furthermore, we have constructed a fusion protein in which this 15 aa sequence of CD44(GP85) is transplanted onto another transmembrane protein which does not bind ankyrin. Our results show that this fusion protein acquires the ability to bind ankyrin confirming that the sequence (306NGGNGTVEDRKPSE320L) is a critical part of the ankryin-binding domain of CD44(GP85). In addition, we have demonstrated that deletion of this 15 aa ankyrin-binding sequence from CD44(GP85) results in a drastic reduction (> or = 90%) of HA-binding and HA-mediated cell adhesion. These findings strongly suggest that ankyrin binding to the cytoplasmic domain of CD44(GP85) plays a pivotal role in regulating hyaluronic acid-mediated cell-cell and cell- extracellular matrix interactions.  相似文献   

8.
W V Johnson  E C Heath 《Biochemistry》1986,25(19):5518-5525
Fetuin, a major glycoprotein in the serum of fetal calves that contains three N-linked and three O-linked carbohydrate side chains, was found to be synthesized in the liver with an 18 amino acid signal peptide, Met-X-X-X-X-Leu-Leu-X-Cys-Leu-Ala-X-Leu-X-X-Cys-X-X, and to undergo cotranslational N-glycosylation. In order to examine O-glycosylation, fetuin peptidyl-tRNA was purified from liver and analyzed for O-linked carbohydrate by quantitating the released [3H]GalNAcitol produced after beta-elimination in the presence of NaB3H4. Within the limits of the assay, less than 1.3% of the O-linked chains had been initiated. Additionally, rough microsomes were used to program a cell-free protein synthesis system. A radiolabeled fetuin intermediate was isolated by immunoprecipitation and shown to contain N-linked carbohydrate by binding to concanavalin A and by susceptibility to cleavage by endoglycosidase H. However, this fetuin intermediate was not detectably bound (less than 1%) by GalNAc-specific lectins, which were shown to bind asialoagalactofetuin. These results suggest that O-glycosylation of fetuin is a posttranslational event.  相似文献   

9.
N-linked glycosylation, a common co-translational modification in eukaryotic cells, involves the transfer of a lipid-linked oligosaccharide onto asparagine residues in a tripeptide sequon on a nascent protein in the lumen of the endoplasmic reticulum. The attachment of an oligosaccharide unit to the polypeptide at the site of occupancy can enhance solubility, improve folding, facilitate secretion, modulate antigenicity, and increase in vivo half-life of the glycoprotein. A number of proteins exhibit variable site occupancy. The efficiency of protein N-glycosylation is dependent on the kinetics of the individual steps in the biosynthesis of the dolichol-linked oligosaccharide and the transfer of the oligosaccharide from the lipid donor substrate to the nascent polypeptide. In this review, we will discuss the role of N-linked glycan site occupancy and give an overview of the possible limitations associated with variable site occupancy. The characterization of the dolichol pyrophosphate biosynthetic pathway and the recent identification of potential rate limiting enzymes in yeast and mammalian cells has made it possible to investigate their role in site occupancy. Genetic and biochemical characterization of oligosaccharide transferase (OST) complex in yeast and mammalian cells have demonstrated the importance of specific OST subunits in protein N-glycosylation. In addition, insights into the location and residues in and around the acceptor tripeptide sequon suggest an influence on N-glycan site occupancy. Insights from these characterizations are being used to elucidate methodologies to control N-glycosylation site heterogeneity.  相似文献   

10.
The biosynthesis and oligosaccharide structure of the human complement regulatory glycoprotein decay-accelerating factor (DAF) were studied in erythrocytes and cell lines. Initial information relative to carbohydrate moieties of DAF was obtained by enzymatic digestions. The 74,000 Mr erythrocyte DAF was lowered 3000 by endoglycosidase F, whereas endoglycosidase H had no effect, indicating one N-linked complex-type unit. Treatment with endo-alpha-N-acetylgalactosaminidase to remove O-linked oligosaccharides resulted in a 48,000 Mr molecule (67% of the Mr shift being due to sialic acid), which decreased to 45,000 Mr after sequential endoglycosidase F treatment. To additionally define the oligosaccharide structure and identify precursors in biosynthetic pathways, DAF was studied in the HL-60 cell line differentiated by vitamin D toward monocytes. Pulse-chase experiments with [35S]methionine revealed a precursor species of 43,000 Mr that underwent an early post-translational modification to a 46,000 Mr intermediate, and subsequently was chased into a mature species of 80,000 Mr that aligned with 125I surface-labeled DAF from these cells. All three forms of DAF were approximately 3000 lower in Mr in the presence of tunicamycin. The two lower Mr DAF species were sensitive to endoglycosidases F and H but not to neuraminidase or endo-alpha-N-acetylgalactosaminidase. In summary, DAF is synthesized as a 43,000 Mr precursor species containing one N-linked high-mannose unit. Before entering the central region of the Golgi, it is converted to a 46,000 Mr species by an as yet unknown post-translational modification. The 46,000 Mr form is converted to the 74,000 Mr (erythrocyte) or 80,000 Mr (leukocyte) membrane form of DAF by the addition of multiple, sialylated O-linked oligosaccharide chains (responsible for the large electrophoretic mobility shift) and conversion of the single N-linked high-mannose unit to a complex-type structure. The cell-specific Mr variation between red and white blood cells arises during this post-translational modification from the 46,000 Mr biosynthetic intermediate to the mature DAF species expressed on the cell surface.  相似文献   

11.
Like both eukaryotes and bacteria, archaea can decorate proteins with N- and O-linked glycans. Whereas pathways and roles of N-glycosylation have been studied in several model archaeal organisms, little is known of O-glycosylation. To explore commonalities and variations of these two versions of glycosylation, we used Haloarcula hispanica as a model. Our previous work showed that H. hispanica S-layer glycoproteins are modified by an N-linked glucose-α-(1, 2)-[sulfoquinovosamine-β-(1, 6)-]galactose trisaccharide and an O-linked glucose-α-(1, 4)-galactose disaccharide. Here, we found that H. hispanica membrane contains C60 dolichol phosphate (DolP) as a lipid carrier for glycosylation. As revealed by bioinformatics, gene deletion and phenotype analysis, gene HAH_1571, renamed agl22, encodes a predicted glucosyltransferase that transfers glucose from glucose-DolP onto galactose-DolP to form the glucose-α-(1, 4)-galactose-DolP precursor of the N-glycosylation. Gene HAH_2016, renamed agl23, encodes a putative flippase-associated protein responsible for flipping of hexose-DolPs across the membrane to face the exterior. Our results also suggested that the synthesis of the N- and O-linked glycans onto target protein occurs on the outer surface of the cell using hexose-DolPs as sugar donors. Deletion mutant showed that N- and O-glycosylation are required for growth in the defined medium mimicking the natural habitat of H. hispanica.  相似文献   

12.
The biosynthesis and maturation of human sucrase-isomaltase (SI, EC 3.2.1.48-10), was studied in cultured small intestinal biopsy specimens and mucosa explants. Pulse-chase experiments with [35S]methionine revealed one high mannose intermediate of Mr = 210,000 (pro-SIh) which was processed at a slow rate to an endo H-resistant, mature form of Mr = 245,000 (pro-SIc). The fully core-glycosylated form (Mr = 212,000) was detected only when 1-deoxynojirimycin was added to the culture medium, thus indicating that the core sugars undergo rapid processing by rough endoplasmic reticulum membrane-bound glycosidases. The data presented showed that trypsin specifically and instantaneously (within 1 min) cleaves pro-SIc to two subunits Ic (Mr = 145,000) and Sc (Mr = 130,000). Elastase and chymotrypsin are not effective. Enzymic and chemical deglycosylations of SI with endo-beta-N-acetylglucosaminidase F/glycopeptidase F and trifluoromethanesulfonic acid (TFMS) as well as probing for the binding capacity of SI to Helix pomatia lectin demonstrated that pro-SIc, Ic, and Sc are N- and O-glycosylated. Furthermore, the results were indicative of a posttranslational O-glycosylation of pro-SI, since (i) the earliest detectable precursor form, pro-SIh, did not bind to H. pomatia lectin and (ii) its deglycosylation products with both endo-beta-N-acetylglucosamidase H and TFMS were identical. Both the Sc and Ic subunits contain eight N-linked glycan units, at least one of which is of the high mannose type and found on Sc. Finally, Sc, but not Ic, was shown to display at least four populations varying in their content of O-linked glycans. The heterogeneous O-glycosylation pattern of Sc could be correlated with the distal position of this subunit (and its O-glycosylation sites) within the pro-SI molecule, thus affecting the extent of O-linked oligosaccharide processing and their subsequent presentation on the mature molecule.  相似文献   

13.
The erythropoietin (EPO) molecule contains four carbohydrate chains. Three contain N-linkages to asparagines at positions 24, 38, and 83, and one contains an O-linkage to a serine at position 126. We constructed human EPO variants that eliminated the three N-glycosylation sites by replacing the asparagines with glutamines singly or in combination. The O-linked carbohydrate chain was removed by replacing the serine with glutamine, valine, histidine, or alanine. A variant with a double mutation (Gln38,83) and another with a triple mutation (Gln24,38,83) were secreted poorly from COS1 and CHO cells even though RNA encoding these variants was present. All other variants with mutations in N-linked glycosylation sites were secreted normally. Removal of any of the N-glycosylation sites reduced the in vivo but not the in vitro biological activity of the EPO molecule. All the mutations at Ser126, the O-glycosylation site, were secreted normally. In vitro activity was also unaffected except for Ala126 which had a 50-fold decrease. The Val126 variant was tested in vivo, and its specific activity was only slightly less than that of the native EPO, which indicates that the O-linked carbohydrate is not essential for activity.  相似文献   

14.
Biosynthesis of cartilage proteoglycan was examined in a model system of cultured chondrocytes from a transplantable rat chondrosarcoma. Extensive modification with the addition of chondroitin sulfate glycosaminoglycan, N-linkcd oligosac-charide, and O-linked oliogosaccharide is required to convert a newly synthesized core protein precursor into a proteoglycan. Kinetic analyses revealed the presence of a large pool of core protein precursor (t1/2 ~ 90 min) awaiting completion into proteoglycan. The large t1/2 of this pool allowed kinetic labeling experiments with a variety of radioactive precursors to distinguish between early biosynthetic events associated primarily with the rough endoplasmic reticulum from late events associated primarily with the Golgi apparatus. The results of a series of experiments indicated that the addition of N-linked oligosaccharide chains occurs early in the biosynthetic process in association with the rough endoplasmic reticulum, whereas the initiation and completion of O-linked oligosaccharides occurs much later, at about the same time as chondroitin sulfate synthesis. This also indicated that keratan sulfate chains, when present in the completed molecule, are added in the Golgi apparatus, as they are probably built on oligosaccharide primers closely related to the O-oligosaccharide chains. Furthermore, when 3H-glucose was used as the precursor, the entry of label into xylose, the linkage sugar between the core protein and the chondroitin sulfate chain, was found to occur within 5 min of the entry of label into galactose and galactosamine in the remainder of the chondroitin sulfate chain. This indicated that the initiation and completion of the chondroitin sulfate chain occurs late in the pathway probably entirely in the Golgi apparatus. Thus, proteoglycan synthesis can be described as occurring in two stages in this system, translation and N-glycosylation of a core protein precursor which has a long half-life in the rough endoplasmic reticulum, followed by extensive rapid modification in the Golgi complex in which the majority of glycosaminoglycan and oligosaccharide chains are added to the core protein precursor with subsequent rapid secretion into the extracellular matrix.  相似文献   

15.
Mouse pro-ACTH/endorphin (or POMC) contains in its sequence each of the four possible pairs of basic amino acids recognized as potential cleavage sites in the production of bioactive peptides from higher mol wt precursors: KR (lysine-arginine), RR, RK, and KK. To examine the structural requirements for processing and routing in one region of pro-ACTH/endorphin, a reporter mutation was introduced into the mouse pro-ACTH/endorphin cDNA; a methionine residue was mutated to an isoleucine residue to allow biosynthetic double labeling with [3H]Ile and [35S]Met. Analysis of stable cell lines expressing the reporter cDNA indicated that this mutation did not affect processing or secretion. Therefore, additional mutations were introduced on the reporter background to investigate important structural features of the precursor. First, the tripeptide signal for N-linked glycosylation in the N-terminal glycopeptide (Asn65,Ser66,Ser67) was disrupted by the conservative substitution of asparagine65 with a glutamine residue. Secondly, O-glycosylation was prevented by substitution of threonine45 with an alanine residue. Finally, lysine50 was mutated to an arginine residue, transforming the RK doublet preceding the gamma 3MSH sequence into an RR doublet. The results show that the enzymatic machinery of AtT-20 cells fails to cleave efficiently at the Arg-Lys (RK) site even after elimination of any possible structural hindrance by carbohydrate side-chains. Elimination of O-linked oligosaccharides to the N-terminal side of gamma 3MSH did not allow cleavage at the RK site, and elimination of N-linked oligosaccharides did not alter the processing and routing of pro-ACTH/endorphin in AtT-20 cells. However, mutation of the RK sequence to RR allowed extensive cleavage regardless of the occurrence of O- or N-glycosylation.  相似文献   

16.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

17.
The human transferrin receptor is a glycoprotein containing three N-linked and one O-linked glycosylation sites. Tryptic digestion of the receptor, followed by chromatography on BioGel P-2 and reverse-phase HPLC, yields a glycopeptide (amino acids 101-120) containing the O-linked site. Amino acid sequence analysis reveals that the site of O-glycosylation is Thr-104. Mass spectral analysis is consistent with the presence of a Gal-GalNAc core with predominantly two sialic acid residues.  相似文献   

18.
The pathogenesis of herpes simplex virus type 1 (HSV-1) implies the sequential infection of many cell types from mucosal cells to neurons, each having a unique pattern of protein glycosylation. The HSV-1 glycoprotein gC-1 is highly glycosylated and contains not only N-linked glycans but also a large number of O-linked glycans, some of which are clustered into two pronase-resistant arrays in the vicinity of the HSV-1 receptor-binding domain of gC-1. The aim of the present study was to characterize gC-1 signals for addition of clustered glycans, to determine the efficacy of synthetic peptides, representing putative O-glycosylation signals, as substrates for a panel of GalNAc transferases, and to identify possible effects of early O-linked glycosylation on the biological functions of gC-1. Gel filtration analysis of the pronase-resistant gC-1 O-glycan clusters from a glycoprotein mutant, lacking a site for N-linked glycosylation at Asn 73 in the vicinity of the O-glycosylation signal, suggested that one function of this N-linked glycan was to modulate the access for GalNAc transferases to one particular O-glycosylation peptide signal (aa 80-104). The ability of four GalNAc-transferase isoenzymes with different cell type expression patterns to initialize O-glycosylation of synthetic gC-1 derived peptides was analyzed. Two synthetic gC-1 peptides (aa 55-69 and aa 80-104) were excellent substrates for all four GalNAc-transferases, suggesting that cell types expressing less frequent GalNAc transferase species with unusual acceptor peptide sequence specificities may also produce a highly O-glycosylated gC-1 after HSV-1 infection. The O-linked glycans were not essential for cell surface expression of gC-1, but monoclonal antibody-assisted epitope analysis of N-acetylgalactosaminidase-treated gC-1 showed that the O-linked monosaccharide GalNAc contributed to expression of a three-dimensional epitope overlapping the heparan sulfate-binding domain of gC-1.  相似文献   

19.
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.  相似文献   

20.
We have purified recombinant human granulocyte-macrophage colony-stimulating factor (hGM-CSF) produced in human lymphoblastoid Namalwa cells. From the results of tunicamycin treatment and N-glycosidase F digestion, it was demonstrated that Namalwa-derived hGM-CSF was highly glycosylated at two potential N-glycosylation sites and several O-glycosylation sites as previously shown for naturally occurring hGM-CSF. We classified the hGM-CSF molecules into three groups according to the molecular weight corresponding to the degree of N-glycosylation: the molecules with two N-glycosylation sites occupied (designated 2N), the molecules with either site glycosylated (1N), and the molecules lacking N-glycosylation (0N). Despite such varied degrees of N-glycosylation, almost all molecules were O-glycosylated. To investigate the role of carbohydrate moieties of hGM-CSF, we isolated each form of hGM-CSF and examined its biological properties. The 2N-type showed 200-fold less in vitro specific activity compared with unglycosylated Escherichia coli-derived hGM-CSF, although the activity of the 0N-type was equivalent to that of the E. coli-derived material. The 1N-type showed an intermediate level of activity. However, in terms of clearance from blood circulation in the rat, the 2N-type showed a half-life five times longer than that of the 0N-type and E. coli-derived hGM-CSF. From these findings, we concluded that N-linked carbohydrate moieties of hGM-CSF play conflicting physiological roles in the efficacy of the protein in vivo but that O-linked carbohydrate moieties do not have such effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号