首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Nuclear factor kappaB (NF-kappaB)-inducing kinase (NIK), IkappaB kinase (IKK)-alpha and -beta, and IkappaBalpha are common elements that signal NF-kappaB activation in response to diverse stimuli. In this study, we analyzed the role of this pathway during insulin-like growth factor II (IGF-II)-induced myoblast differentiation. L6E9 myoblasts differentiated with IGF-II showed an induction of NF-kappaB DNA-binding activity that correlated in time with the activation of IKKalpha, IKKbeta, and NIK. Moreover, the activation of IKKalpha, IKKbeta, and NIK by IGF-II was dependent on phosphatidylinositol 3-kinase, a key regulator of myogenesis. Adenoviral transduction with the IkappaBalpha(S32A/S36A) mutant severely impaired both IGF-II-dependent NF-kappaB activation and myoblast differentiation, indicating that phosphorylation of IkappaBalpha at Ser-32 and Ser-36 is an essential myogenic step. Adenoviral transfer of wild-type or kinase-deficient forms of IKKalpha or IKKbeta revealed that IKKalpha is required for IGF-II-dependent myoblast differentiation, whereas IKKbeta is not essential for this process. Finally, overexpression of kinase-proficient wild-type NIK showed that the activation of NIK is sufficient to generate signals that trigger myogenin expression and multinucleated myotube formation in the absence of IGF-II.  相似文献   

6.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

7.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

8.
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.  相似文献   

9.
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.  相似文献   

10.
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.  相似文献   

11.
12.
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.  相似文献   

13.
Homozygosity for the aly point mutation in NF-kappaB-inducing kinase (NIK) results in alymphoplasia in mice, a phenotype similar to that of homozygosity for deletion of the lymphotoxin beta receptor (LTbetaR). We now find that NF-kappaB activation by Epstein-Barr virus latent membrane protein 1 (LMP1) or by an LMP1 transmembrane domain chimera with the LTbetaR signaling domain in human embryonic kidney 293 cells is selectively inhibited by a wild type dominant negative NIK comprised of amino acids 624-947 (DN-NIK) and not by aly DN-NIK. In contrast, LMP1/CD40 is inhibited by both wild type (wt) and aly DN-NIK. LMP1, an LMP1 transmembrane domain chimera with the LTbetaR signaling domain, and LMP1/CD40 activate NF-kappaB in wt or aly murine embryo fibroblasts. Although wt and aly NIK do not differ in their in vitro binding to tumor necrosis factor receptor-associated factor 1, 2, 3, or 6 or in their in vivo association with tumor necrosis factor receptor-associated factor 2 and differ marginally in their very poor binding to IkappaB kinase beta (IKKbeta), only wt NIK is able to bind to IKKalpha. These data are compatible with a model in which activation of NF-kappaB by LMP1 and LTbetaR is mediated by an interaction of NIK or a NIK-like kinase with IKKalpha that is abrogated by the aly mutation. On the other hand, CD40 mediates NF-kappaB activation through a kinase that interacts with a different component of the IKK complex.  相似文献   

14.
15.
Cellular responses to stress-like stimuli require the IkappaB kinase (IKK) signalsome (IKKalpha, IKKbeta, and NEMO/IKKgamma) to activate NF-kappaB-dependent genes. IKKbeta and NEMO/IKKgamma are required to release NF-kappaB p65/p50 heterodimers from IkappaBalpha, resulting in their nuclear migration and sequence-specific DNA binding; but IKKalpha was found to be dispensable for this initial phase of canonical NF-kappaB activation. Nevertheless, IKKalpha-/- mouse embryonic fibroblasts (MEFs) fail to express NF-kappaB targets in response to proinflammatory stimuli, uncovering a nuclear role for IKKalpha in NF-kappaB activation. However, it remains unknown whether the global defect in NF-kappaB-dependent gene expression of IKKalpha-/- cells is caused by the absence of IKKalpha kinase activity. We show by gene expression profiling that rescue of near physiological levels of wild type IKKalpha in IKKalpha-/- MEFs globally restores expression of their canonical NF-kappaB target genes. To prove that the kinase activity of IKKalpha was required on a genomic scale, the same physiological rescue was performed with a kinase-dead, ATP binding domain IKKalpha mutant (IKKalpha(K44M)). Remarkably, the IKKalpha(K44M) protein rescued approximately 28% of these genes, albeit in a largely stimulus-independent manner with the notable exception of several genes that also acquired tumor necrosis factor-alpha responsiveness. Thus the IKKalpha-containing signalsome unexpectedly functions in the presence and absence of extracellular signals in both kinase-dependent and -independent modes to differentially modulate the expression of five distinct classes of IKKalpha/NF-kappaB-dependent genes.  相似文献   

16.
17.
Apaf-1 and Nod1 are members of a protein family, each of which contains a caspase recruitment domain (CARD) linked to a nucleotide-binding domain, which regulate apoptosis and/or NF-kappaB activation. Nod2, a third member of the family, was identified. Nod2 is composed of two N-terminal CARDs, a nucleotide-binding domain, and multiple C-terminal leucine-rich repeats. Although Nod1 and Apaf-1 were broadly expressed in tissues, the expression of Nod2 was highly restricted to monocytes. Nod2 induced nuclear factor kappaB (NF-kappaB) activation, which required IKKgamma and was inhibited by dominant negative mutants of IkappaBalpha, IKKalpha, IKKbeta, and IKKgamma. Nod2 interacted with the serine-threonine kinase RICK via a homophilic CARD-CARD interaction. Furthermore, NF-kappaB activity induced by Nod2 correlated with its ability to interact with RICK and was specifically inhibited by a truncated mutant form of RICK containing its CARD. The identification of Nod2 defines a subfamily of Apaf-1-like proteins that function through RICK to activate a NF-kappaB signaling pathway.  相似文献   

18.
The human herpesvirus 8 (HHV8, also called Kaposi's sarcoma-associated herpesvirus) has been linked to Kaposi's sarcoma and primary effusion lymphoma (PEL) in immunocompromised individuals. We demonstrate that PEL cell lines have a constitutively active NF-kappaB pathway, which is associated with persistent phosphorylation of IkappaBalpha. To elucidate the mechanism of NF-kappaB activation in PEL cell lines, we have investigated the role of viral FLICE inhibitory protein (vFLIP) in this process. We report that stable expression of HHV8 vFLIP in a variety of cell lines is associated with persistent NF-kappaB activation caused by constitutive phosphorylation of IkappaBalpha. HHV8 vFLIP gets recruited to a approximately 700-kDa IkappaB kinase (IKK) complex and physically associates with IKKalpha, IKKbeta, NEMO/IKKgamma, and RIP. HHV8 vFLIP is incapable of activating NF-kappaB in cells deficient in NEMO/IKKgamma, thereby suggesting an essential role of an intact IKK complex in this process. Our results suggest that HHV8 vFLIP might contribute to the persistent NF-kappaB activation observed in PEL cells by associating with and stimulating the activity of the cellular IKK complex.  相似文献   

19.
OX40 is a member of the tumor necrosis factor receptor (TNF-R) superfamily. We observed that overexpression of OX40 activated NF-kappaB, which was inhibited by dominant negative forms of TRAF2, NF-kappaB-inducing kinase (NIK), and IkappaB kinase (IKK) alpha. This indicates that OX40 signaling leads to NF-kappaB activation through the same cascade as TNF-R2. We then investigated the negative regulatory function of TRAF3 on OX40-induced NF-kappaB activation. TRAF3 blocked OX40-, TRAF2-induced NF-kappaB activation, but not NIK- and IKKalpha-induced NF-kappaB activation, indicating that TRAF3 blocks the pathway between TRAF2 and NIK. C-terminal deletion mutants as well as the N-terminal deletion mutant of TRAF3 inhibited NF-kappaB activation induced by OX40 or TRAF2. Since TRAF3 bound to OX40 through the C-terminal TRAF domain, the C-terminal domain is likely to work as a dominant negative mutant to compete the recruitment of TRAF2 to the receptor, which transmits the signal from OX40 to the downstream, NIK kinase. On the other hand, the N-terminal domain of TRAF3 seems to affect the downstream of TRAF2 binding. Thus, it is suggested that TRAF3 actively inhibits NF-kappaB activation induced by OX40.  相似文献   

20.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号