首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Intercalary de novo deletion of chromosome 1: del(1) (q24 to q32)   总被引:1,自引:0,他引:1  
We present one unrelated girl with a de novo interstitial deletion of a segment in the long arm of chromosome 1 (q24----q32). Comparison of the phenotypic characteristics of this proband with those of six previously described patients with similar deletion, does not suggest the existence of a 1q interstitial deletion syndrome. Clinical manifestations of these patients are variable and non specific: intrauterine growth retardation, low set ears, height and weight failure and mental retardation, clinodactyly of the fifth fingers. Other well detailed cases will be necessary to prove the existence of a 1 q interstitial deletion syndrome (q24----q32).  相似文献   

2.
We report on a 6-year-old male patient with de novo 7q36 deletion and 8q24.3 duplication diagnosed by combining traditional G-banding and FISH studies. His clinical history was remarkable for pre- and postnatal growth retardation, neonatal feeding problems and developmental/mental retardation with non-verbal communication. He presented microcephaly, large ears, narrow palpebral fissures with blepharoptosis, epicanthic folds, large depressed nasal bridge, bulbous nasal tip, right cryptorchidism and delayed bone age on X-rays. There was no evidence of holoprosencephaly (HPE) or sacral agenesis sequence. By using in FISH analysis a series of YACs linearly ordered along the 7q36 region, the precise breakpoint on 7q36 was found to be within the target region of the YAC 742G8, a YAC that appeared to be only partially deleted. Clinical and chromosomal findings in this patient are compared to those previously recorded in similarly investigated patients from the literature with terminal 7q deletion.  相似文献   

3.
We report a female newborn with a de novo 1q4 deletion ascertained by G bands but refined as an interstitial one by FISH with a subtelomeric 1q probe; hence, the final karyotype was 46,XX,del(1)(q42q44).ish subtel1q x 2. She presented a few typical features of the del(1q42) syndrome. Additionally, she showed occipital skin aplasia, interauricular communication, and intestinal perforation-obstruction and she died at 24 days of age. This observation illustrates the clinical variability of the syndrome as well as the occasional reduced survival. The redefinition by molecular cytogenetics of a terminal deletion as an interstitial one suggests that interstitial deletions are more common than reported by classic cytogenetics and can partially account for the phenotypic variability in some deletion syndromes.  相似文献   

4.
New deletion syndrome: 1q43.   总被引:2,自引:0,他引:2       下载免费PDF全文
A male infant showed dysmorphology of the head and face, neck, extremities, and genitalia, as well as growth and mental retardation. His G-banded karyotype was 46,XY,--1+der(1),t(1;16)(q43;q24)mat. Combined with five previously reported cases involving similar terminal deletions beginning at 1q42 or 43, we show that the homology of phenotypic characteristics permits identification of a new deletion syndrome, the first involving chromosome 1.  相似文献   

5.
We describe an 8-years old female with supernumerary chromosome der(21)t(4;21)(q25;q22) resulting in partial trisomy 4q25-qter and partial trisomy 21(pter-q22). The extra material was originated from a reciprocal balanced translocation carrier mother (4q;21q). Karyotyping was confirmed by FISH using whole chromosome painting probes for 4 and 21q and using 21q22.13-q22.2 specific probe to rule out trisomy of Down syndrome critical region. Phenotypic and cytogenetic findings were compared with previously published cases of partial trisomy 4q and 21q. Our patient had the major criteria of distal trisomy 4q namely severe psychomotor retardation, growth retardation, microcephaly, hearing impairment, specific facies (broad nasal root, hypertelorism, ptosis, narrow palpebral fissures, long eye lashes, long philtrum, carp like mouth and malformed ears) and thumbs and minor feet anomalies. In spite of detection of most of the 3 copies of chromosome 21, specific features of Down syndrome (DS) were lacked in this patient, except for notable bilateral symmetrical calcification of basal ganglia. This report represents further delineation of the phenotype-genotype correlation of trisomy 4q syndrome. It also supports that DS phenotype is closely linked to 21q22. Nevertheless, presence of basal ganglia calcification in this patient may point out to a more proximal region contributing in its development in DS, or that genes outside the critical region may influence or control manifestations of DS features.  相似文献   

6.
We report on a 5-year-old Tunisian boy with particular dysmorphic features and mild mental retardation limited in delayed and poor language acquisition. Cytogenetic analysis using RHG banding and FISH using whole chromosome four painting probe showed a partial duplication in the long arm of chromosome four. Locus specific probes and CGH confirmed the presence of a 'pure' partial trisomy 4q due to de novo direct tandem dup(4)(q25q34). Comparative analysis of our case with those published previously, suggests that region 4q31-q33 may be involved in the development of the 4q characteristic dysmorphic features and the distal band 4q35 may be involved in the development of microcephaly and severe mental and growth retardation.  相似文献   

7.
A case with de novo interstitial deletion of chromosome 7q21.1-q22: A patient with multiple congenital anomalies was found to have a de novo proximal interstitial deletion of chromosome 7q21.1-q22. The patient was 10.5 years of age, and manifestations include growth retardation (below 3rd percentile), mental retardation, mild microcephaly, hypersensitivity to noise, mild spasticity, short palpebral fissures, alternant exotropia, compensated hypermetropic astigmatism, hypotelorism, hypoplastic labia majora and minora, clinodactyly of fingers 4 and 5. Molecular studies revealed that the deletion had a paternal origin, while chromosomes of both parents cytogenetically were shown to be normal. Molecular, and fluorescence in situ hybridization (FISH) analyses confirmed no deletion at the Williams-Beuren Syndrome region. Some of the heterogeneous clinical findings were consistent with previously reported cases of same chromosomal breakpoints.  相似文献   

8.
We present a female child with mild mental retardation and congenital malformations. After fluorescence in situ hybridization (FISH) we found only abnormal karyotype in all cells. We used rapid FISH and original DNA probes--PAC62.10.1 and PAC20.19.N, specific for segments of chromosome 16q24. Karyotype of proband 46,XX.ish del(16)(q24.2:) (PAC20.19.N,PAC62.10.1-). Parent karyotypes are normal. This case may suggest the presence of clinical picture 16q- with defined clinical polymorphism at small telomeric loss, and also its necessary of the use of molecular-cytogenetic techniques in genetic departments.  相似文献   

9.
We report a patient with an interstitial 14q32.1-->q32.3 deletion and review the literature. The adult patient presented with moderate mental retardation, a friendly behavior and a non-specific phenotype. The deletion seemed to be terminal but with FISH probes appeared to be interstitial. Comparison with other 14q terminal and interstitial deletion patients reported in literature and those with a ring 14 chromosome is given.  相似文献   

10.
We report on a 16-month-old boy presenting with psychomotor retardation, craniofacial anomalies and severe vision deficit. Analysis of GTG-banded chromosomes showed that the patient had extra chromosomal material in the long arm of one chromosome 20. This chromosome aberration was further characterized with FISH using a chromosome 20 specific paint and band-specific probes. A partial trisomy 20q was shown to be present, the karyotype being 46, XY, dup (20) (q11.2q12). The cytogenetic and clinical findings are compared with cases previously reported in the literature.  相似文献   

11.
In a 6 year old boy referred for mental retardation, fragile X syndrome was ruled out by cytogenetic and molecular analyses. Cytogenetic investigations revealed an inverted X chromosome (p21.3q27.1). A similar chromosomal rearrangement was detected in his mildly mentally retarded mother. Fluorescence in situ hybridization (FISH), using a panel of ordered YAC clones, allowed the identification of YACs spanning both the Xp21.3 and Xq27.1 breakpoints, where many non-specific mental retardation loci have been reported so far. Further investigations by FISH showed that the IL1RAPL1 gene at Xp21.3 was disrupted by the X chromosome inversion and therefore its inactivation may be related to the mental retardation observed in our patients.  相似文献   

12.
We report five patients with a combination of brachymetaphalangia and mental retardation, similar to that observed in Albright hereditary osteodystrophy (AHO). Four patients had cytogenetically visible de novo deletions of chromosome 2q37. The fifth patient was cytogenetically normal and had normal bioactivity of the α subunit of Gs (Gsα), the protein that is defective in AHO. In this patient, we have used a combination of highly polymorphic molecular markers and FISH to demonstrate a microdeletion at 2q37. The common region of deletion overlap involves the most telomeric 2q marker, D2S125, and extends proximally for a maximum distance of 17.6 cM. We suggest this represents a consistent phenotype associated with some deletions at 2q37 and that genes important for skeletal and neurodevelopment lie within this region. Screening for deletions at this locus should be considered in individuals with brachymetaphalangia and mental retardation. Furthermore, 2q37 represents a candidate region for type E brachydactyly.  相似文献   

13.
We report a child with mental retardation, brain anomalies and congenital heart defect. His karyotype, after G-banding and FISH with a whole chromosome probe for chromosome 11 and a locus-specific probe for the MLL gene, was 46,XY,dup(11)(q23q23).ish dup(11)(q23q23)(wcp11+, MLL++) de novo; i.e., he had a pure partial 11q23 duplication. Clinical and cytogenetic findings of the present case were compared with the 7 previously reported cases with pure partial trisomy 11q; in 6/8 cases the region 11q23 was involved. We conclude that the scarce number of cases and their heterogeneity do not allow to establish a reliable genotype-phenotype correlation.  相似文献   

14.
We describe a girl with a mosaic isodicentric chromosome 18q with discrete features of trisomy 18. She presented with prenatal growth retardation, prominent occiput, small face, high nasal bridge, large nose, thin lips, a perimembranous ventricular septal defect, and subsequent slow psychomotor development and slow growth. Amosaic isopseudodicentric chromosome 18q was detected in cultured lymphocytes: mos 46,XX,psu idic(18)(q23)[74]/ 46,XX[26]. Monosomy of the distal end of 18q23 could not be confirmed by fluorescent in situ hybridization (FISH) with RP 1l-565D23, one of the most telomere located probes of 18q23. Isopseudodicentric chromosome 18q is very rare. Most cases are mosaics. The phenotype varies. More or less distinct features of trisomy 18 and monosomy 18q can be found depending on the degree of mosaicism and the breakpoint in 18q.  相似文献   

15.
Trisomy 1q43 syndrome: a consistent phenotype with macrocephaly, characteristic face, developmental delay and cardiac anomalies: Patients with trisomy (1)(q42-qter) present with psychomotor retardation, macrocephaly, occasional presence of facial capillary naevi, cardio-vascular anomalies and small size for gestational age. We report on a girl with the same pattern of malformations, who has pure trisomy 1 q43: duplication of the region (1) (q43) and the translocation of the terminal region of the other chromosome 1 to the derivative 1, narrowing down the critical region for the characteristic traits of severe developmental delay, macrocephaly and congenital cardiac malformations.  相似文献   

16.
Choi JH  Shin YL  Kim GH  Seo EJ  Kim Y  Park IS  Yoo HW 《Hormone research》2005,63(6):294-299
BACKGROUND: Endocrine abnormalities, including hypocalcemia, thyroid dysfunction, and short stature, are associated with chromosome 22q11.2 microdeletion syndrome. This study was undertaken to examine the frequencies and clinical features of endocrine abnormalities in patients with 22q11.2 microdeletion syndrome. METHODS: We analyzed 61 patients with 22q11.2 microdeletion syndrome diagnosed based on the verification of microdeletion by fluorescent in situ hybridization (FISH) using a probe of the DiGeorge syndrome critical region (TUPLE1) at 22q11.2 and a control probe, ARSA at 22q13. Serum total calcium, phosphorus, and intact parathyroid hormone (PTH) levels were measured, thyroid function test was performed, and serum IGF-1 and IGFBP-3 levels were also estimated. Height and weight of patients were compared with individual chronological ages. RESULTS: Hypocalcemia was found in 20 patients (32.8%), and overt hypoparathyroidism in 8 (13.1%). Two patients (3.3%) showed autoimmune thyroid diseases, 1 each with Graves' disease and Hashimoto thyroiditis. Ten patients (16.4%) were below the third percentile in height, but the serum IGF-1 level was normal in 9 out of these 10 patients. CONCLUSION: Our findings show that patients with chromosome 22q11.2 microdeletion syndrome present with variable endocrine manifestations and variable clinical phenotypes. In addition to FISH analysis, careful endocrine evaluations are required in patients with this microdeletion syndrome, particularly for those with hypoparathyroidism or thyroid dysfunction.  相似文献   

17.
Both cytogenetically visible and cryptic deletions of the terminal region of chromosome 22q are associated with a clinical phenotype including mental retardation, delay in expressive speech development, hypotonia, normal to accelerated growth and minor facial dysmorphic features. The genes responsible for the development of the phenotype have not yet been identified, but a distal localization is probable, since the cytogenetically visible and the cryptic deletions show a similar pattern of symptoms. We report a 33-year-old woman with a submicroscopic 22q13 deletion, mild mental retardation, speech delay, autistic symptoms and mild facial dysmorphic features. The deletion was mapped by FISH using cosmid probes from terminal 22q13, and the size of the deletion was estimated to be 100 kb. Three genes are affected by the deletion in this patient. ACR and RABL2B are deleted and proSAP2 is disrupted. This observation, together with recently published data, supports the notion that proSAP2 is the most important contributor to the 22q13 deletion phenotype.  相似文献   

18.
Characterization of a partial trisomy 16 q with FISH: Report of a patient and literature review: We report on a 28-year-old male patient with severe growth and mental retardation, severe behavioural problems, especially automutilation, and a spastic quadriplegia. He showed no specific dysmorphism. The karyotype was 46, XY, dir dup(16) (q11.2-q13). The clinical and cytogenetical findings are compared with 3 previously reported cases with proximal duplication 16q.  相似文献   

19.
We report a 15 month old boy with prominent metopic suture, epicanthal folds, strabismus, low-set ears, microretrognathia, large anterior fontanel, bilateral simian creases, muscular hypotonia, and severe psychomotor retardation. He also had West syndrome. An electroencephalogram showed hypsarrythmia, and cranial MR indicated a myelinisation delay. Standard karyotyping showed additional material on one chromosome 9p. Using FISH, a terminal 7q duplication spanning 26 Mb in size and a terminal 9p deletion sized (at least) 9.1 Mb were identified. The father had a karyotype of t(7;9)(q33;p23) and the mother's karyotype was normal. The boy presented typical facial features of the distal 7q duplication syndrome but no genital anomalies attributable to his distal 9p deletion. We assume that the severe epilepsy is likely due to the trisomy 7q.  相似文献   

20.
The gene for neurofibromatosis type 1 (NF1), mapping to 17q11.2, has one of the highest observed mutation rates, partially because of its large size and gene conversion primed by NF1 pseudogenes. We have previously shown by means of high resolution fluorescence in situ hybridization (FISH) that a number of the loci flanking the NF1 gene are duplicated, in agreement with the reported presence of NF1 repetitive sequences (REPs). We report a direct tandem duplication of the NF1 gene identified in 17q11.2 by high-resolution FISH. FISH on stretched chromosomes with locus-specific probes revealed the duplication of the NF1 gene from the promoter to 3'UTR, but with at least the absence of exon 22. Fiber FISH with P1 artificial and bacterial artifical chromosomes, including the NF1 5'UTR and 3'UTR and flanking regions, visualized the direct tandem duplication with a similar, but not identical, genomic organization of the NF1 duplicon copies. Duplication was probably present in the human-chimpanzee-gorilla common ancestor, as demonstrated here by the finding of the duplicated NF1 gene at orthologous chromosome loci. The NF1 intrachromosomal duplication may contribute to the high whole-gene mutation rate by gene conversion, although the functional activity of the NF1 copy remains to be investigated. Detection of the NF1 duplicon by high-resolution FISH may pave the way to filling the gaps in the human genomic sequence of the pericentromeric 17q11.2 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号