首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organogenesis and the establishment of the mature phenotype require an interplay between diverse recognition systems. Concerning protein–carbohydrate interactions, galectins are known to be involved in several extra- and intracellular functions. Due to the occurrence of two avian galectins in liver (chicken galectin-16; CG-16) and intestine (chicken galectin-14; CG-14) with different developmental regulation, the questions addressed are to what extent and where these galectins are present during chicken kidney development. Using Western blot analysis, the presence of both activities in tissue extracts was ascertained. A solid-phase assay showed peak levels at day 12 followed by a decline. A histochemical analysis was carried out in combination with routine staining. Epithelial cells of the mesonephric proximal tubules were immunoreactive in the cytoplasm for CG-14 from day 5 of incubation onwards. Additionally, epithelial cells of the metanephric collecting ducts were stained. For CG-16 a rather similar pattern of staining was seen, additional positivity in early glomerular podocytes being notable. At the electron microscopical level, a diffuse staining for CG-14 was seen in the cytoplasm, whereas immunoreactivity for CG-16 was observed mainly in mitochondria. These results demonstrate quantitative differences in the developmental regulation of the two avian galectins with obvious similarities in the cell-type pattern but with a disparate intracellular localisation profile.  相似文献   

2.
Intrafamily gene diversification has led to three prototype galectins in chicken [i.e., chicken galectin (CG)-1A, CG-1B, and CG-2] that show distinct expression profiles and developmental regulation. In order to pinpoint structural disparities among them, we determined the crystal structure of CG-1B. Alteration of the position of the Trp ring in the lectin site and the presence of only two ordered water molecules therein, as well as changes in the interface region between the two subunits, set the structure of CG-1B clearly apart from that of CG-1A. Intriguingly, the unique presence of two Cys residues at positions 2 and 7 in the N-terminal region translated into formation of an intersubunit disulfide bridge between the Cys7 residues of the homodimer in the crystal. In solution, oxidation is associated with significant shape changes in the dimeric protein and the additional occurrence of a compacted form with an intrasubunit disulfide bridge between Cys2 and Cys7. The single-site mutant C7S/C7V was not subjected to such changes, supporting the crucial role of Cys7 in redox-dependent shape changes. These results point to the functional significance of the distinctive presence of the two Cys residues in the N-terminal region of CG-1B.  相似文献   

3.
Cell surface glycans present docking sites to endogenous lectins. With growing insight into the diversity of lectin families it becomes important to answer the question on the activity profiles of individual family members. Focusing on galectins (-galactoside-binding proteins without Ca2+-requirement sharing the jelly-roll-like folding pattern), this study was performed to assess the potency of proto-type galectins (galectins-1 and -7 and CG-16) and the chimera-type galectin-3 to elicit selected cell responses by carbohydrate-dependent surface binding and compare the results. The galectins, except for galectin-1, were found to enhance detergent (SDS)-induced hemolysis of human erythrocytes to different degrees. Their ability to confer increased membrane osmofragility thus differs. Aggregation of neutrophils, thymocytes and platelets was induced by the proto-type galectin-1 but not -7, by CG-16 and also galectin-3. Cell-type-specific quantitative differences and the importance of the fine-specificity of the galectin were clearly apparent. In order to detect cellular responses based on galectin binding and bridging of cells the formation of haptenic-sugar-resistant (HSR) intercellular contacts (an indicator of post-binding signaling) was monitored. It was elicited by CG-16 and galectin-1 but not galectin-3, revealing another level at which activities of individual galectins can differ. Acting as potent elicitor of neutrophil aggregation, CG-16-dependent post-binding effects were further analyzed. Carbohydrate-dependent binding to the neutrophils' surface led to a sustained increase of cytoplasmic Ca2+ concentration in a dose-dependent manner. The ability of CG-16 to activate H2O2 generation by human peripheral blood neutrophils was primed by the Ca2+-ionophor ionomycin and by cytochalasin B. In a general context, these results emphasize that – besides plant lectins as laboratory tools – animal lectins can trigger cell reaction cascades, implying potential in vivo relevance for the measured activities. Within the family of galectins, the activity profiles depend on the target cell type and the individual galectin. Notably, proto-type galectins do not necessarily share a uniform capacity as elicitor.  相似文献   

4.
Differential developmental regulation of expression, fine-specificity differences in ligand recognition and disparate capacity for homodimerization are characteristics of the two currently known proto-type chicken galectins. The X-ray crystal structure of the first avian galectin, the homodimeric agglutinin from chicken liver (CG-16), has been solved in the absence of ligand in two crystal forms. Although the arrangement of lectin dimers in the two crystals is different, the structure of the monomers and their association into the extended beta-sandwich that characterises the dimer are virtually identical. The fold establishes a beta-sandwich motif composed of a five-stranded and a six-stranded beta-sheet evocative of proto-type mammalian galectins. The carbohydrate-binding site is occupied by six water molecules that take the place of the sugar in the complex. They help to stabilise in the absence of the ligand the spatial arrangement of the amino acid side-chains involved in sugar recognition. Docking of N-acetyllactosamine into the binding site reveals that three of these water molecules, which are in direct contact with the protein, occupy positions equivalent to the key sugar hydroxyl groups, namely the hydroxyls at positions 4 and 6 of the galactose unit and at position 3 of the N-acetylglucosamine unit. Crystallographic data are fully consistent with the binding features in solution previously derived from chemical mapping with deoxy, fluoro and O-methyl derivatives and laser photo-CIDNP (chemically induced dynamic nuclear polarisation) studies. The possible molecular basis for the monomeric character of the chicken intestinal galectin as well as potential mechanisms of oxidative inactivation by disulphide bridging are evaluated on the basis of the given structural information concerning the CG-16 dimer interface and the cysteine residues, respectively.  相似文献   

5.
6.
The duplication of genes for recognition molecules and the ensuing diversification of the members of such families generate complex groups of homologous proteins. One example are galactoside-specific lectins whose sequences display constant features related to sugar binding, the galectins. Based on the inverse abundance of the chicken galectins CG-14 and CG-16 in adult intestine and liver, these two lectins represent a model to comparatively study expression of the related proteins and the galectin-reactive sites (glycoproteins and glycolipids) biochemically and histochemically. Functional overlap and/or acquisition of distinct functions would be reflected in qualitative and/or quantitative aspects of ligand display. Using five different stages of embryogenesis, differential regulation of the two galectins was detected in liver and intestine. The clear preference for one galectin (CG-14) was observed in intestine already at rather early stages, whereas equivalence for both proteins was noted in liver from day 12 to day 18 prior to hatching, as seen by ELISA assays and Western blot analysis. Presentation of galectin-reactive glycoproteins showed a tendency for gradual increase in both organs. Galectin-blotting analysis revealed primarily very similar patterns of positive bands at the different stages of development and only few quantitative and qualitative changes. The reactivity of glycolipids in a solid-phase assay was more variable, even surpassing the response of extracts of the adult organ at several embryonic stages. While the localization patterns of the galectins and galectin-reactive sites were nearly indistinguishable in the liver, intestinal tissue differed with respect to the placement and accessibility of binding sites. Thus, the results suggest a differential regulation of galectin activities in the two organs. As a sum they resemble the course of development of availability of glycoprotein ligands in vitro. These findings support the notion for a partial functional redundancy in this family. The described approach to employ galectin-specific antibodies and the labeled galectins as tools to assess presentation of ligands is suggested to be of general relevance to address the question of distinct vs. overlapping functions of related recognition molecules.  相似文献   

7.
Spectroscopic monitoring is applied to detect structural alterations for homodimeric adhesion/growth-regulatory galectins. Mammalian galectin-1 and the avian ortholog CG-1B, due to their distinct patterns of cysteine positioning, can undergo oxidation. When monitoring tryptophan fluorescence anisotropy comparatively, an indicator of structural changes affecting rotational diffusion, segmental motion and/or fluorescence life time, reductions are seen in both cases upon oxidation. The decrease was especially marked for the human protein, more than 2-fold compared to the avian lectin. Using this approach to analyze binding of lactose, equilibrium and kinetic binding constants of both proteins were similar. This result is corroborated by fluorescence correlation spectroscopy with labeled proteins. Of note, the diffusion constant of CG-1B increased by 5.6% in the presence of lactose, as has been seen for the human protein. When processing the other two homodimeric avian galectins (CG-1A, CG-2) accordingly it was revealed that sequence homology does not translate into identical behavior. The diffusion constant of CG-1A was not affected, a slight decrease (−3.8%) was observed for CG-2. Obviously, alterations induced by oxidation and responses to ligand binding are different between these closely related proteins. Methodologically, the two spectroscopic techniques are proven to be sensitive and robust sensors for detecting intergalectin differences.  相似文献   

8.
Galectins are a continuously expanding family of beta-galactoside-binding lectins present in a variety of evolutionarily divergent animal species. Here we report, for the first time, that expression of galectins extends to the reptilia lineage of lizards. Up to five lactose-binding proteins were isolated from the lizard Podarcis hispanica by affinity chromatography on asialofetuin-Sepharose. The main component, which is most abundantly expressed in skin, was purified from this tissue and further characterized. Under native conditions the protein behaved as a monomer with a molecular mass of 14,500 Da and an isoelectric point of 6.3. Based on sequence homology of the 58 N-terminal amino acid residues with galectins, and on its demonstrated galactoside-binding activity, this lectin we named LG-14 (from Lizard Galectin and 14 kDa) is classified as a new member of the galectin family. LG-14 falls into and strengthen the still thinly populated category of monomeric prototype galectins.  相似文献   

9.
Although protein-carbohydrate interactions are supposed to play key roles in cell adhesion, signalling and growth control. Their exact role in skin physiology has only recently been investigated. The endogenous lectins galectin-1 and galectin-3 have been identified in skin including hair follicles. Here, we analyzed the expression and distribution of these galectins and their binding sites in C57BL/6 mice during hair cycle. The expression of galectin-1 and galectin-3 binding sites was found to be predominantly hair cycle-dependent showing some overlapping to the expression of galectin-1 and -3. The outer root sheath (ORS) expressed galectin-1 binding sites during anagen IV to VI and in early catagen, whereas galectin-1 was expressed from early anagen to late catagen. The ORS expressed galectin-3 binding sites during catagen transition corresponding to a galectin-3 expression during anagen V and catagen. The innermost layer of the ORS expressed galectin-3 binding sites during anagen VI until catagen VIII, but galectin-3 during anagen III to IV and catagen. The inner root sheath (IRS) expressed galectin-3 binding sites only in anagen IV but missed expression of any of the two galectins. The matrix cells expressed galectin-3 binding sites in catagen II-III as well as galectin-3 during anagen V to catagen IV. The present study provides the first evidence for a cycle-related expression of both galectin-1 and -3 and their binding sites during murine hair cycle.  相似文献   

10.
This study aimed at determining the contribution of intestinal bifidobacteria to the immune system activation using widely distributed galectins as markers of immune cell homoeostasis. In human flora-associated mice, bacteria were enumerated in the gut, blood, spleen, liver and lungs, while the expression of galectin-1 (Gal-1) and galectin-3 (Gal-3) was estimated by PCR in the intestine and real-time quantitative PCR in the other organs. Gal-1 and -3 were rarely expressed in the intestine. In blood, only Gal-1 was expressed while both galectins were expressed in all other organs. A high prevalence of colonic bifidobacteria was associated with a lower expression of both pulmonary galectins, whose levels negatively correlated with bifidobacterial counts. Caecal bifidobacterial counts also negatively correlated with pulmonary Gal-3 mRNA levels. The spleen was the only organ showing an upregulation of Gal-1 expression related to its bacterial contamination. However, this upregulation was only observed when bifidobacteria were not detected in the colon. A putative mechanism explaining the reduced expression of galectins when bifidobacteria highly colonize the mouse intestine could be that, by reducing the bacterial translocation, bifidobacteria also lead to a decreased blood concentration of substances produced by intestinal bacteria.  相似文献   

11.
High levels of expression of galectin-1 and galectin-3, the beta-galactoside-binding proteins, have been recently described in malignant thyroid tumors but not in adenomas nor in normal thyroid tissue. However, there are no data about the expression of these galectins during fetal thyroid development. In this study we analyzed immunohistochemically the presence of galectin-1 and galectin-3 in human fetal thyroid glands (16-37 weeks of gestation). Weak to moderate cytoplasmic staining for galectin-1 was observed in follicular cells of all fetal thyroids. Galectin-3 could not be detected in thyroid follicular cells of any fetal thyroid investigated. Both galectins were detected in stromal tissue, but staining for galectin-1 was more intense. The absence of galectin-3 in thyroid cells during fetal development suggests that galectin-3 is expressed de novo during malignant transformation of thyroid epithelium, and that galectin-1 could be considered an oncofetal antigen. The results obtained indicated potential roles for galectin-1 and galectin-3 during the investigated period of human fetal thyroid gland development. Both galectins might participate in developmental processes regarding stromal fetal thyroid tissue organization, whereas galectin-1 might have a function in thyroid epithelium maturation.  相似文献   

12.
Ahmed H  Du SJ  O'Leary N  Vasta GR 《Glycobiology》2004,14(3):219-232
Galectins are a family of beta-galactoside-binding lectins that on synthesis are either translocated into the nucleus or released to the extracellular space. Their developmentally regulated expression, extracellular location, and affinity for extracellular components (such as laminin and fibronectin) suggest a role in embryonic development, but so far this has not been unequivocally established. Zebrafish constitute an ideal model for developmental studies because of their external fertilization, transparent embryos, rapid growth, and availability of a large collection of mutants. As a first step in addressing the biological roles in zebrafish embryogenesis, we identified and characterized members of the three galectin types: three protogalectins (Drgal1-L1, Drgal1-L2, Drgal1-L3), one chimera galectin (Drgal3), and one tandem-repeat galectin (Drgal9-L1). Like mammalian prototype galectin-1, Drgal1-L2 preferentially binds to N-acetyllactosamine. Genomic structure of Drgal1-L2 revealed four exons, with the exon-intron boundaries conserved with the mammalian galectin-1. Interestingly, this gene also encodes an alternatively spliced form of Drgal1-L2 that lacks eight amino acids near the carbohydrate-binding domain. Zebrafish galectins exhibited distinct patterns of temporal expression during embryo development. Drgal1-L2 is expressed postbud stage, and its expression is strikingly specific to the notochord. In contrast, Drgal1-L1 is expressed maternally in the oocytes. Drgal1-L3, Drgal3, and Drgal9-L1 are expressed both maternally and zygotically, ubiquitously in the adult tissues. The distinct temporal and spatial patterns of expression of members of the zebrafish galectin repertoire suggest that each may play distinct biological roles during early embryogenesis.  相似文献   

13.
Functional analyses of placental protein 13/galectin-13.   总被引:7,自引:0,他引:7  
Placental protein 13 (PP13) was cloned from human term placenta. As sequence analyses, alignments and computational modelling showed its conserved structural and functional homology to members of the galectin family, the protein was designated galectin-13. Similar to human eosinophil Charcot-Leyden crystal protein/galectin-10 but not other galectins, its weak lysophospholipase activity was confirmed by 31P-NMR. In this study, recombinant PP13/galectin-13 was expressed and specific monoclonal antibody to PP13 was developed. Endogenous lysophospholipase activity of both the purified and also the recombinant protein was verified. Sugar binding assays revealed that N-acetyl-lactosamine, mannose and N-acetyl-glucosamine residues widely expressed in human placenta had the strongest binding affinity to both the purified and recombinant PP13/galectin-13, which also effectively agglutinated erythrocytes. The protein was found to be a homodimer of 16 kDa subunits linked together by disulphide bonds, a phenomenon differing from the noncovalent dimerization of previously known prototype galectins. Furthermore, reducing agents were shown to decrease its sugar binding activity and abolish its haemagglutination. Phosphorylation sites were computed on PP13/galectin-13, and phosphorylation of the purified protein was confirmed. Using affinity chromatography, PAGE, MALDI-TOF MS and post source decay, annexin II and beta/gamma actin were identified as proteins specifically bound to PP13/galectin-13 in placenta and fetal hepatic cells. Perinuclear staining of the syncytiotrophoblasts showed its expression in these cells, while strong labelling of the syncytiotrophoblasts' brush border membrane confirmed its galectin-like externalization to the cell surface. Knowing its colocalization and specific binding to annexin II, PP13/galectin-13 was assumed to be secreted to the outer cell surface by ectocytosis, in microvesicles containing actin and annexin II. With regard to our functional and immunomorphological results, PP13/galectin-13 may have special haemostatic and immunobiological functions at the lining of the common feto-maternal blood-spaces or developmental role in the placenta.  相似文献   

14.
Members of the galectin family of endogenous lectins are involved in tumor growth regulation and in establishing characteristics of the malignant phenotype via protein-carbohydrate and protein-protein interactions. To identify peptide ligands with the potential to modulate these tumor-relevant interactions beneficially, complementary screening methods were employed, that is, both phage-display and a combinatorial pentapeptide library with the key YXY tripeptide core. Three representative prototype galectins were selected. The search for high-affinity ligands among phage-displayed random heptamers yielded enrichment after five selection cycles of the nonglycomimetic CQSPSARSC peptide in the case of the chicken homologue of galectin-1 but not the human protein, an indication for specificity. The most active glycomimetic from the combinatorial library of 5832 pentamers was WYKYW. Identification of peptide ligands for galectins with and without glycomimetic properties is thus possible. Our study documents the potential to combine the two library-based approaches for structural optimization of lead peptides.  相似文献   

15.
The expression pattern of galectin-1 and galectin-3 in the human olfactory epithelium was investigated in relation to olfactory marker protein (OMP) using confocal laser immunofluorescence in human specimens and postmortem biopsies. OMP expression was found in olfactory receptor neurons (ORNs) in the olfactory mucosa and in fibers of the olfactory nerve crossing the submucous connective tissue. Galectin-1 was expressed in both the connective tissue of the nasal cavity and in the basal layer of the olfactory epithelium. In contrast, galectin-3 expression was limited to cells of the upper one-third of the olfactory epithelium. Expression of galectin-3 occurred in a subset of OMP-positive cells. However, between areas of galectin-1 and galectin-3 expression in the lower and upper portion of the epithelium, OMP-positive ORNs did not stain for both galectins. Considering the potential role of galectin-1 and galectin-3 in cell differentiation and maturation, the differential localization of galectins in the olfactory epithelium appears to be consistent with a significant role of these molecules in the physiological turnover of ORNs. Accepted: 20 December 1999  相似文献   

16.
Across mammalian species, human galectin-10 and ovine galectin-14 are unique in their expression in eosinophils and their release into lung and gastrointestinal tissues following allergen or parasite challenge. Recombinant galectin-14 is active in carbohydrate binding assays and has been used in this study to unravel the function of this major eosinophil constituent. In vitro cultures revealed that galectin-14 is spontaneously released by eosinophils isolated from allergen-stimulated mammary gland lavage, but not by resting peripheral blood eosinophils. Galectin-14 secretion from peripheral blood eosinophils can be induced by the same stimuli that induce eosinophil degranulation. Flow cytometric analysis showed that recombinant galectin-14 can bind in vitro to eosinophils, neutrophils and activated lymphocytes. Glycan array screening indicated that galectin-14 recognizes terminal N-acetyllactosamine residues which can be modified with α1-2-fucosylation and, uniquely for a galectin, prefers α2- over α2-sialylation. Galectin-14 showed the greatest affinity for lacto-N-neotetraose, an immunomodulatory oligosaccharide expressed by helminths. Galectin-14 binds specifically to laminin in vitro, and to mucus and mucus producing cells on lung and intestinal tissue sections. In vivo, galectin-14 is abundantly present in mucus scrapings collected from either lungs or gastrointestinal tract following allergen or parasite challenge, respectively. These results suggest that in vivo secretion of eosinophil galectins may be specifically induced at epithelial surfaces after recruitment of eosinophils by allergic stimuli, and that eosinophil galectins may be involved in promoting adhesion and changing mucus properties during parasite infection and allergies.  相似文献   

17.
Presence of species-specific gene divergence in a protein family prompts to thoroughly study structural aspects and expression profiles of the products. We herein focus on two members of an adhesion/growth-regulatory group of endogenous lectins, i.e. galectins-5 and -9. After first ascertaining species specificity of occurrence of galectin-5, constituted by a short section of rat galectin-9's N-terminal part and its C-terminal carbohydrate recognition domain, by database mining, we next detected and defined sequence differences in the proximal promoter region between the two genes. The ensuing hypothesis for distinct expression profiles was tested first by RT-PCR and then by immunohistochemistry. For the latter purpose, we employed antibodies rigorously controlled for absence of cross-reactivity including assays with various other galectins and, if necessary, refined by chromatographic removal of bi- or oligospecific activities. Indeed, the galectins have non-identical expression profiles, qualitative differences, e.g. seen for galectin-5-positive bone marrow and erythrocytes or for hitherto unknown expression in cells of the theca folliculi and galectin-9-positive skin epidermis and esophageal epithelium. Lack of hepatocyte or renal cortex staining separates these two expression profiles in rat from localization of galectin-9 in mouse. Interspecies extrapolation in a case of a galectin involved in unique gene divergence may thus not be valid. The presented results on galectin-5 relative to galectin-9 intimate distinct functions especially in erythropoiesis and imply currently unknown mechanisms to compensate its absence from the galectin network in other mammals.  相似文献   

18.
Human galectin-8 isoforms and cancer   总被引:4,自引:0,他引:4  
Galectins are animal lectins that can specifically bind beta-galactosides. Thirteen galectins have already been described. This review focuses on a specific member of this family: galectin-8. This galectin was discovered in prostate cancer cells eight years ago and has been studied extensively in the last few years. The galectin-8 gene ( LGALS8) encodes numerous mRNAs by alternate splicing and the presence of three unusual polyadenylation signals. These mRNAs encode six different isoforms of galectin-8: three belong to the tandem-repeat galectin group (with two CRDs linked by a hinge peptide) and three to the prototype group (with one CRD). Various studies showed that galectin-8 is widely expressed in tumor tissues as well as in normal tissues. The level of galectin-8 expression may correlate with the malignancy of human colon cancers and the degree of differentiation of lung squamous cell carcinomas and neuro-endocrine tumors. Recently, the differences in galectin-8 expression levels between normal and tumor tissues have been used as a guide for the selection of strategies for the prevention and treatment of lung squamous cell carcinoma. These experiments are still under investigation, but demonstrate the potential of galectin-8 research to enhance our understanding of, and possibly prevent, the process of neoplastic transformation.  相似文献   

19.
20.
Histochemical monitoring of developmental processes is presently centered on protein-protein interactions. However, oligosaccharides have the potential to store and transmit biological information. Carbohydrate chains of cellular glycoconjugates present determinants for binding of endogenous lectins. This interaction can be relevant for developmental processes. In fact, beta-galactosides and their derivatives serve as ligands for members of the lectin family of galectins. Since it is unclear to what extent functions of different galectins differ or overlap, hereby introducing redundancy into this system, monitoring of galectin presence during tissue maturation should include more than one type of galectin (galectin fingerprinting). Here, we focus on the two most frequently described ones, namely the homodimeric prototype galectin-1 and the chimera-type galectin-3, the latter one so far not characterized from bovine tissue. In the first step, we have detected its presence biochemically in addition to the abundant galectin-1 in bovine respiratory and digestive tracts during development. Evidently, diversification of the primitive foregut will not lead to an alteration of this property. Immunohistochemistry revealed clear differences in the galectins' localization profiles. Galectin-1 expression is strong in mesenchymal cells, especially smooth muscle cells, while epithelial lining harbors galectin-3. A gradual increase in staining intensity with development is especially observed in the case of galectin-3. Notably, this change is accompanied by a shift from primarily nuclear localization to the cytoplasm, an alteration not seen for galectin-1. However, nuclear presence of galectin-1 is encountered. Thus, the delineation of differences in expression of galectin-1 and -3 with respect to cell types and in the developmental course of subcellular localization argues in favor of mediation of nonoverlapping functions by these two homologous, endogenous lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号