首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Pore-forming toxins (PFTs) are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduction of the DAF-2 insulin-like pathway confers the resistance of Caenorhabditis elegans to cytolitic crystal (Cry) PFTs produced by Bacillus thuringiensis. In contrast to the canonical DAF-2 insulin-like signaling pathway previously defined for aging and pathogenesis, the PFT response pathway diverges at 3-phosphoinositide-dependent kinase 1 (PDK-1) and appears to feed into a novel insulin-like pathway signal arm defined by the WW domain Protein 1 (WWP-1). In addition, we also find that WWP-1 not only plays an important role in the intrinsic cellular defense (INCED) against PFTs but also is involved in innate immunity against pathogenic bacteria Pseudomonas aeruginosa and in lifespan regulation. Taken together, our data suggest that WWP-1 and DAF-16 function in parallel within the fundamental DAF-2 insulin/IGF-1 signaling network to regulate fundamental cellular responses in C. elegans.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Evolutionary models of aging propose that a trade-off exists between the resources an organism devotes to reproduction and growth and those devoted to cellular maintenance and repair, such that an optimal life history always entails an imperfect ability to resist stress. Yet, since environmental stressors, such as caloric restriction or exposure to mild stress, can increase stress resistance and life span, it is possible that a common genetic mechanism could regulate the allocation of resources in response to a changing environment (for overview, see ). Consistent with predictions of evolutionary trade-off models, we show that nematodes carrying an integrated DAF-16::GFP transgene grow and reproduce more slowly yet are more stress resistant and longer lived than controls carrying the integration marker alone. We also show that the nuclear localization of the DAF-16::GFP fusion protein responds to environmental inputs as well as genetic. Environmental stresses, such as starvation, heat, and oxidative stress, cause rapid nuclear localization of DAF-16. In conditions rich in food, we find that DAF-16::GFP is inhibited from entry into the nucleus by daf-2 and akt-1/akt-2, both components of insulin-like signaling in nematodes. We suggest that changes in the subcellular localization of DAF-16 by environmental cues allows for rapid reallocation of resources in response to a changing environment at all stages of life.  相似文献   

12.
13.
Evolutionary models of aging propose that a trade-off exists between the resources an organism devotes to reproduction and growth and those devoted to cellular maintenance and repair, such that an optimal life history always entails an imperfect ability to resist stress. Yet, since environmental stressors, such as caloric restriction [1] or exposure to mild stress [2] and [3], can increase stress resistance and life span, it is possible that a common genetic mechanism could regulate the allocation of resources in response to a changing environment (for overview, see [4], [5], [6] and [7]). Consistent with predictions of evolutionary trade-off models, we show that nematodes carrying an integrated DAF-16::GFP transgene grow and reproduce more slowly yet are more stress resistant and longer lived than controls carrying the integration marker alone. We also show that the nuclear localization of the DAF-16::GFP fusion protein responds to environmental inputs as well as genetic. Environmental stresses, such as starvation, heat, and oxidative stress, cause rapid nuclear localization of DAF-16. In conditions rich in food, we find that DAF-16::GFP is inhibited from entry into the nucleus by daf-2 and akt-1/akt-2, both components of insulin-like signaling in nematodes. We suggest that changes in the subcellular localization of DAF-16 by environmental cues allows for rapid reallocation of resources in response to a changing environment at all stages of life.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号