首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.  相似文献   

2.
Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.  相似文献   

3.
The Gab1 docking protein forms a platform for the assembly of a multiprotein signaling complex downstream from receptor tyrosine kinases. In general, recruitment of Gab1 occurs indirectly, via the adapter protein Grb2. In addition, Gab1 interacts with the Met/hepatocyte growth factor receptor in a Grb2-independent manner. This interaction requires a Met binding domain (MBD) in Gab1 and is essential for Met-mediated epithelial morphogenesis. The Gab1 MBD has been proposed to act as a phosphotyrosine binding domain that binds Tyr-1349 in the Met receptor. We show that a 16-amino acid motif within the Gab1 MBD is sufficient for interaction with the Met receptor, suggesting that it is unlikely that the Gab1 MBD forms a structured domain. Alternatively, the structural integrity of the Met receptor, and residues upstream of Tyr-1349 located in the C-terminal lobe of the kinase domain, are required for Grb2-independent interaction with the Gab1 MBD. Moreover, the substitution of Tyr-1349 with an acidic residue allows for the recruitment of the Gab1 MBD and for phosphorylation of Gab1. We propose that Gab1 and the Met receptor interact in a novel manner, such that the activated kinase domain of Met and the negative charge of phosphotyrosine 1349 engage the Gab1 MBD as an extended peptide ligand.  相似文献   

4.
Binding of scatter factor (SF) to the surface protein of Madin-Darby canine kidney (MDCK) cells was investigated. The factor has a specific affinity for membrane proteins of MDCK cells and could be purified 10-20-fold using a membrane protein-affinity chromatographic procedure. The binding was pH- and salt-dependent. The factor did not bind to columns prepared with membrane proteins from non responder cells or with bovine serum albumin. Further purification to homogeneity was achieved using reverse phase and immunoaffinity chromatography. The factor dissociated into 92, 62 and 34/32 kDa bands on SDS-PAGE under reducing conditions. A 230 kDa protein band, the receptor-SF complex, was observed when radiolabeled SF was crosslinked to surface proteins of MDCK cells and the complexes were subjected to electrophoresis. The binding of radiolabeled SF to the MDCK cells was decreased in presence of excess unlabeled SF. These observations suggest that the binding of SF to surface proteins of MDCK cells is specific and occurs predominantly to a 150 kDa protein.  相似文献   

5.
Cystinosis is a lysosomal transport disorder characterized by an accumulation of intra-lysosomal cystine. Biochemical studies showed that the lysosomal cystine transporter was distinct from the plasma membrane cystine transporters and that it exclusively transported cystine. The gene underlying cystinosis, CTNS, encodes a predicted seven-transmembrane domain protein called cystinosin, which is highly glycosylated at the N-terminal end and carries a GY-XX-Phi (where Phi is a hydrophobic residue) lysosomal-targeting motif in its carboxyl tail. We constructed cystinosin-green fluorescent protein fusion proteins to determine the subcellular localization of cystinosin in transfected cell lines and showed that cystinosin-green fluorescent protein colocalizes with lysosomal-associated membrane protein 2 (LAMP-2) to lysosomes. Deletion of the GY-XX-Phi motif resulted in a partial redirection to the plasma membrane as well as sorting to lysosomes, demonstrating that this motif is only partially responsible for the lysosomal targeting of cystinosin and suggesting the existence of a second sorting signal. A complete relocalization of cystinosin to the plasma membrane was obtained after deletion of half of the third cytoplasmic loop (amino acids 280-288) coupled with the deletion of the GY-DQ-L motif, demonstrating the presence of the second signal within this loop. Using site-directed mutagenesis studies we identified a novel conformational lysosomal-sorting motif, the core of which was delineated to YFPQA (amino acids 281-285).  相似文献   

6.
7.
Homologous desensitization of beta2-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein-coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestins to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization via clathrin-coated pits, and the initiation of alternative signaling pathways. In this study we have investigated the interactions between receptors and beta-arrestin2 in living cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin2 binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation; (b) repeated stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin2 very rapidly; and (c) the interaction of beta-arrestin2 with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to swift dissociation of the receptor-beta-arrestin2 complex. This fast agonist-controlled association and dissociation of beta-arrestins from prephosphorylated receptors should permit rapid control of receptor sensitivity in repeatedly stimulated cells such as neurons.  相似文献   

8.
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor.  相似文献   

9.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.  相似文献   

10.
Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma ear-containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/hepatocyte growth factor RTK when stimulated, to sort it for recycling in association with "gyrating" clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met toward degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation, and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling.  相似文献   

11.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

12.
Localization of ATP-binding cassette transporter isoform C1 (ABCC1) to the basolateral membrane of polarized cells is crucial for export of a variety of cellular metabolites; however, the mechanism regulating basolateral targeting of the transporter is poorly understood. Here we describe identification of a basolateral targeting signal in the first cytoplasmic loop domain (CLD1) of human ABCC1. Comparison of the CLD1 amino acid sequences from ABCC1 to ABCC2 revealed that ABCC1 possesses a characteristic sequence, E295EVEALI301, which is comprised of a cluster of acidic glutamate residues followed by a di-leucine motif. This characteristic sequence is highly conserved among vertebrate ABCC1 orthologs and is positioned at a site that is structurally equivalent to the apical targeting signal previously described in ABCC2. Alanine scanning mutagenesis of this sequence in full-length human ABCC1 showed that both L300 and I301 residues were required for basolateral targeting of ABCC1 in polarized HepG2 and MDCK cells. Conversely, E295, E296, and E298 residues were not required for basolateral localization of the transporter. Therefore, a di-leucine motif within the CLD1 is a basolateral targeting determinant of ABCC1.  相似文献   

13.
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.  相似文献   

14.
15.
16.
Friend erythroleukemia virus has long served as a paradigm for the study of the multistage progression of leukemia. Friend virus infects erythroid progenitor cells, followed by an initial polyclonal expansion of infected cells, which is driven by the activation of a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). Subsequently, the accumulation of additional mutations in p53 and the activation of PU.1 result in full leukemic transformation. The early stages of transformation induced by Friend virus are characterized in vitro by the Epo-independent growth of infected erythroblasts. We have shown previously that this transforming event requires the kinase activity and Grb2 binding site of Sf-Stk and the recruitment of a Grb2/Gab2 complex to Sf-Stk. Here, we demonstrate that Stat3 is required for the Epo-independent growth of Friend virus-infected cells and that the activation of Stat3 by Sf-Stk is mediated by a novel Stat3 binding site in Gab2. These results underscore a central role for Stat3 in hematopoietic transformation and describe a previously unidentified role for Gab2 in the recruitment and activation of Stat3 in response to transforming signals generated by tyrosine kinases.  相似文献   

17.
18.
19.
The Gab family of docking proteins is phosphorylated in response to various growth factors and cytokines and serves to recruit multiple signaling proteins. Gab1 acts downstream from the Met-hepatocyte growth factor receptor, and Gab1 overexpression promotes Met-dependent morphogenesis of epithelial cells. Recruitment of Gab1 to Met or epidermal growth factor (EGF) receptors requires a receptor-binding site for the Grb2 adapter protein and a proline-rich domain in Gab1, defined as the Met-binding domain. To determine the requirement for Grb2 in Gab1 recruitment, we have mapped two Grb2 carboxyl-terminal SH3 domain binding sites conserved in Gab1 and related protein Gab2. One corresponds to a canonical Grb2-binding motif, whereas the second, located within the Gab1 Met-binding domain, requires the proline and arginine residues of an atypical PXXXR motif. The PXXXR motif is required but not sufficient for Grb2 binding, whereas an extended motif, PX3RX2KPX7PLD, conserved in Gab proteins as well as the Grb2/Gads-docking protein, Slp-76, efficiently competes binding of Grb2 or Gads adapter proteins. The association of Gab1 with Grb2 is required for Gab1 recruitment to the EGF receptor but not the Met receptor. Hence different mechanisms of Gab1 recruitment may reflect the distinct biological functions for Gab1 downstream from the EGF and Met receptors.  相似文献   

20.
TBZE-029 {1-(2,6-difluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole} is a novel selective inhibitor of the replication of several enteroviruses. We show that TBZE-029 exerts its antiviral activity through inhibition of viral RNA replication, without affecting polyprotein processing. To identify the viral target of TBZE-029, drug-resistant coxsackievirus B3 (CVB3) was selected. Genotyping of resistant clones led to the identification of three amino acid mutations in nonstructural protein 2C, clustered at amino acid positions 224, 227, and 229, immediately downstream of NTPase/helicase motif C. The mutations were reintroduced, either alone or combined, into an infectious full-length CVB3 clone. In particular the mutations at positions 227 and 229 proved essential for the altered sensitivity of CVB3 to TBZE-029. Resistant virus exhibited cross-resistance to the earlier-reported antienterovirus agents targeting 2C, namely, guanidine hydrochloride, HBB [2-(alpha-hydroxybenzyl)-benzimidazole], and MRL-1237 {1-(4-fluorophenyl)-2-[(4-imino-1,4-dihydropyridin-1-yl)methyl]benzimidazole hydrochloride}. The ATPase activity of 2C, however, remained unaltered in the presence of TBZE-029.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号