首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.  相似文献   

2.
The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs) to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs) and disruption of cytoplasmic or nuclear aggresomes) showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs, are likely to serve both overlapping and non-overlapping functions during viral infections.  相似文献   

3.
Herpesviruses utilize viral and cellular kinases for replication, and these mediate essential functions that are important for viral pathogenesis. Elucidating the roles of kinases in herpesvirus infections may highlight virus-host interactions that are possible targets for kinase inhibitors with antiviral activity. Varicella zoster virus (VZV) encodes two kinases that phosphorylate viral proteins involved in regulation, assembly, and virulence. VZV infection also induces the activity of host cell cyclin-dependent kinases (cdk4 and cdk2) in nondividing cells, causing a disregulation of the cell cycle. Roscovitine and Purvalanol, kinase inhibitors that target cdks, prevent VZV replication at concentrations with few cytotoxic effects. Cdk inhibitors therefore have potential as antivirals that may extend to a broad range of viruses and have the added advantage that resistance does not arise easily.  相似文献   

4.
5.
梁昌镛 《生命科学》2013,(11):1059-1064
丝氨酸/苏氨酸激酶存在于所有已知的疱疹病毒中,它们具有多种功能,参与病毒感染的整个过程,尤其是病毒与机体的相互作用。主要阐述了两类保守的疱疹病毒丝氨酸/苏氨酸激酶(单纯疱疹病毒HSV的ULl3激酶和US3激酶)在病毒感染过程的重要作用。两者都参与调控细胞和病毒基因的表达,介导病毒衣壳出核以及免疫逃避。虽然这些激酶对病毒在体外培养细胞中复制的影响各不相同,但是对于病毒的毒力非常重要,因此,可用作抗病毒药物设计的靶位。  相似文献   

6.
In this study, we characterized the antiviral mechanism of action of AZD0530 and dasatinib, two pharmacological inhibitors of host kinases, that also inhibit dengue virus (DV) infection. Using Northern blot and reporter replicon assays, we demonstrated that both small molecules inhibit the DV2 infectious cycle at the step of steady-state RNA replication. In order to identify the cellular target of AZD0530 and dasatinib mediating this anti-DV2 activity, we examined the effects of RNA interference (RNAi)-mediated depletion of the major kinases known to be inhibited by these small molecules. We determined that Fyn kinase, a target of both AZD0530 and dasatinib, is involved in DV2 RNA replication and is probably a major mediator of the anti-DV activity of these compounds. Furthermore, serial passaging of DV2 in the presence of dasatinib led to the identification of a mutation in the transmembrane domain 3 of the NS4B protein that overcomes the inhibition of RNA replication by AZD0530, dasatinib, and Fyn RNAi. Although we observed that dasatinib also inhibits DV2 particle assembly and/or secretion, this activity does not appear to be mediated by Src-family kinases. Together, our results suggest that AZD0530 and dasatinib inhibit DV at the step of viral RNA replication and demonstrate a critical role for Fyn kinase in this viral process. The antiviral activity of these compounds in vitro makes them useful pharmacological tools to validate Fyn or other host kinases as anti-DV targets in vivo.  相似文献   

7.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.  相似文献   

8.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.  相似文献   

9.
The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinases called AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases, which include PKA (cAMP-dependent protein kinase A), PKG (cGMP-dependent kinase) and PKC (protein kinase C). AGC kinases are also highly conserved and play a myriad of roles in cellular growth, proliferation and survival. The AGC kinases are regulated by a common scheme that involves phosphorylation of the kinase activation loop by PDK1 (phosphoinositide-dependent kinase 1), and phosphorylation at one or more sites at the C-terminal tail. The identification of two distinct TOR protein complexes, TORC1 (TOR complex 1) and TORC2, with different sensitivities to rapamycin, revealed that TOR, as part of either complex, can mediate phosphorylation at the C-terminal tail for optimal activation of a number of AGC kinases. Together, these studies elucidated that a fundamental function of TOR conserved throughout evolution may be to balance growth versus survival signals by regulating AGC kinases in response to nutrients and environmental conditions. This present review highlights this emerging function of TOR that is conserved from budding and fission yeast to mammals.  相似文献   

10.
Phosphorylation of hepatitis B virus (HBV) core protein has recently been shown to be a prerequisite for pregenomic RNA encapsidation into viral capsids, but the host cell kinases mediating this essential step of the HBV replication cycle have not been identified. We detected two kinases of 95 and 115 kDa in HuH-7 total cell lysates which interacted specifically with the HBV core protein and phosphorylated its arginine-rich C-terminal domain. The 95-kDa kinase was purified and characterized as SR protein-specific kinase 1 (SRPK1) by mass spectrometry. Based on this finding, the 115-kDa kinase could be identified as the related kinase SRPK2 by immunoblot analysis. In vitro, both SRPKs phosphorylated HBV core protein on the same serine residues which are found to be phosphorylated in vivo. Moreover, the major cellular HBV core kinase activity detected in the total cell lysate showed biochemical properties identical to those of SRPK1 and SRPK2, as examined by measuring binding to a panel of chromatography media. We also clearly demonstrate that neither the cyclin-dependent kinases Cdc2 and Cdk2 nor protein kinase C, previously implicated in HBV core protein phosphorylation, can account for the HBV core protein kinase activity. We conclude that both SRPK1 and SRPK2 are most likely the cellular protein kinases mediating HBV core protein phosphorylation during viral infection and therefore represent important host cell targets for therapeutic intervention in HBV infection.  相似文献   

11.
Background: Aurora kinases are a recently discovered family of kinases (A, B & C) consisting of highly conserved serine\threonine protein kinases found to be involved in multiple mitotic events: regulation of spindle assembly checkpoint pathway, function of centrosomes and cytoskeleton, and cytokinesis. Aberrant expression of Aurora kinases may lead to cancer. For this reason the Aurora kinases are potential targets in the treatment of cancer. In this review we discuss the biology of these kinases: structure, function, regulation and association with cancer. Methods and Results: A literature search. Conclusion: Many of the multiple functions of mitosis are mediated by the Aurora kinases. Their aberrant expression can lead to the deregulation of cell division and cancer. For this reason, the Aurora kinases are currently one of the most interesting targets for cancer therapy. Some Aurora kinase inhibitors in the clinic have proven effectively on a wide range of tumor types. The clinical data are very encouraging and promising for development of novel class of structurally different Aurora kinase inhibitors. Hopefully the Aurora kinases will be potentially useful in drug targeted cancer treatment.  相似文献   

12.
D G Jones  J Rosamond 《Gene》1990,90(1):87-92
We have identified a novel protein kinase-encoding gene, KIN3, in the genome of the budding yeast Saccharomyces cerevisiae. The gene was isolated from a library of cloned genomic fragments by probing with an oligodeoxyribonucleotide mixture corresponding to part of a highly-conserved region in the catalytic domain of protein serine-threonine kinases. KIN3 is unique in the yeast genome, maps to chromosome VI and is actively expressed in mitotically dividing cells to produce a 1400 nucleotide (nt) message. The nt sequence of KIN3 predicts a protein product of 43.4 kDa which contains all of the conserved elements found in known protein serine-threonine kinases, although the organisation of these elements in the KIN3 gene product differs significantly from the consensus. The function of the KIN3-encoded protein kinase is unclear although it appears not to be essential for growth, conjugation or sporulation.  相似文献   

13.
Group I p21-activated kinases are a highly conserved three-member family of serine/threonine kinases that act as key effectors for the small GTPases Cdc42 and Rac. In man, these enzymes have been implicated in a wide range of biological processes and are beginning to draw the attention of the pharmaceutical industry as potential therapeutic targets in cancer and in inflammatory processes. In this review, we summarize basic properties of group I Paks and discuss recently uncovered roles for these kinases in immune function and in viral infection.  相似文献   

14.
15.
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the “Src module,” composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.  相似文献   

16.
Protein kinases: a diverse family of related proteins   总被引:9,自引:0,他引:9  
Homologies in amino-acid sequence indicate that all known protein kinases share a conserved catalytic core, and, thus, belong to a related family of proteins that have evolved in part from a common ancestoral origin. This family includes cellular kinases, oncogenic viral kinases and their protooncogene counterparts, and growth factor receptors. One of the simplest and certainly the best characterized of the protein kinases at the biochemical level is the kinase that is activated in response to cAMP. The properties of this cAMP-dependent protein kinase are reviewed with particular emphasis on the features of nucleotide binding and catalytic mechanism that are likely to be shared by all protein kinases. In spite of this conserved catalytic core, these kinases vary widely in overall structure and in the mechanisms by which each is regulated, and these differences also are compared.  相似文献   

17.
Malaria is a major threat to world health. The identification of parasite targets for drug development is a priority and parasitic protein kinases suggest themselves as suitable targets as many display profound structural and functional divergences from their host counterparts. In this paper, we describe the structure of the orphan protein kinase, Plasmodium falciparum protein kinase 7 (PFPK7). Several Plasmodium protein kinases contain extensive insertions, and the structure of PFPK7 reveals how these may be accommodated as excursions from the canonical eukaryotic protein kinase fold. The constitutively active conformation of PFPK7 is stabilized by a structural motif in which the role of the conserved phosphorylated residue that assists in structuring the activation loop of many protein kinases is played by an arginine residue. We identify two series of PFPK7 ATP-competitive inhibitors and suggest further developments for the design of selective and potent PFPK7 lead compounds as potential antimalarials.  相似文献   

18.
Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds. Remarkably, in vitro kinase assays revealed that the serine/threonine kinases Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) and p38alpha were among the most potently inhibited kinase targets. Thus, pyrido[2,3-d]pyrimidines did not discriminate between tyrosine and serine/threonine kinases. Instead, we found that these inhibitors are quite selective for protein kinases possessing a conserved small amino acid residue such as threonine at a critical site of the ATP binding pocket. We further demonstrated inhibition of both p38 and RICK kinase activities in intact cells upon pyrido[2,3-d]pyrimidine inhibitor treatment. Moreover, the established functions of these two kinases as signal transducers of inflammatory responses could be correlated with a potent in vivo inhibition of cytokine production by a pyrido[2,3-d]pyrimidine compound. Thus, our data demonstrate the utility of proteomic methods employing immobilized kinase inhibitors for identifying new targets linked to previously unrecognized therapeutic applications.  相似文献   

19.
Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号