首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium oxalate (CaOx) is the most common component of human kidney stones. Heterogeneous nucleation is regarded as the key mechanism in this process. In this study, we have used an imprinted 6-methacrylamidohexanoic acid/divinylbenzene co-polymer as a biomimetic surface to nucleate CaOx crystal formation. The polymer was imprinted with either calcium oxalate monohydrate (COM) or dihydrate (COD) template crystals. These were washed out of the polymer, which was then immersed in various test solutions. The test solutions were an aqueous solution of calcium chloride and sodium oxalate, artificial urine and a sample of real urine. Crystals that formed on the polymer surface were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, atomic absorption spectroscopy and scanning electron microscopy. Results showed that in the aqueous solution the COM-imprinted polymer induced the nucleation of COM. The COD-imprinted polymer induced only trace amounts of COD crystallization, together with larger quantities of COM. In artificial and real urines, COM also specifically precipitated on the COM-imprinted surface. The results show that, at least to some extent, the imprinted polymers direct formation of their morphologically matched crystals. In the case of COD, however, it appears that either rapid hydrate transformation of COD to COM occurs, or the more stable COM polymorph is directly co-precipitated by the polymer. Our results support the hypothesis that heterogeneous nucleation plays a key role in CaOx stone formation and that the imprinted polymer model could provide an additional and superior diagnostic tool for stone researchers to assess stone-risk in urine.Abbreviations COD calcium oxalate dihydrate - COM calcium oxalate monohydrate - COT calcium oxalate trihydrate - dvb divinylbenzene - 6-maaha 6-methylacrylamidohexanoic acid  相似文献   

2.
We have previously identified changes in the cellular proteome of renal tubular cells induced by low‐dose (100 μg/mL) and high‐dose (1000 μg/mL) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. However, the functional significance of such expression data remained unclear. In this study, we performed comparative analyses and functional investigations of four proteomic datasets to define potential mechanisms by which renal tubular cells responded to differential crystal types and doses. The data showed that high‐dose induced greater changes than low‐dose, whereas COM induced more changes than COD. Luciferin–luciferase ATP assay revealed increased intracellular ATP level by high‐dose of both COM and COD. OxyBlot assay and Western blotting showed accumulated intracellular oxidized proteins but decreased ubiquitinated proteins by high‐dose of both crystals. Flow cytometric analysis of cell death showed that high‐dose of both crystals, particularly COM, significantly increased cell death. Also, crystal adhesion assay showed higher degree of cell–crystal adhesion in high‐dose and COM when compared to low‐dose and COD, respectively. Finally, pretreatment of epigallocatechin‐3‐gallate revealed a protective effect on COM/COD crystals‐induced oxidative stress and cell‐crystal adhesion. Collectively, these data may provide a better understanding of cellular responses of renal tubular cells to COM/COD crystals in kidney stone disease.  相似文献   

3.
Cell membranes have been proposed to serve as promoters for calcium oxalate monohydrate (COM) kidney stone formation. However, direct evidence to demonstrate the modulatory effects of renal tubular cell membranes on COM crystals does not currently exist. We thus examined the effects of intact MDCK cells and their fragmented membranes on COM crystal growth, aggregation and transformation. COM crystals were generated in the absence (control) or presence of intact MDCK cells or their membrane fragments. Intact MDCK cells and their membrane fragments significantly inhibited COM crystal growth (22.6% and 25.2% decreases in size, respectively) and significantly reduced COM total crystal mass (23.1% and 25.6% decreases, respectively). In contrast, both of them markedly promoted crystal aggregation (1.9-fold and 3.2-fold increases, respectively). Moreover, both intact cells and membrane fragments could transform COM to calcium oxalate dihydrate (COD) crystals. Finally, COM crystal growth inhibitory activities of both membrane forms were successfully confirmed by a spectrophotometric oxalate-depletion assay. Our data provide the first direct evidence to demonstrate the dual modulatory effects of MDCK membranes on COM crystals. Although growth of individual COM crystals was inhibited, their aggregation was promoted. These findings provide additional insights into the mechanisms of COM kidney stone formation.  相似文献   

4.
The rat kidney H1 oxalate binding protein was isolated and purified. Oxalate binds exclusively with H1B fraction of H1 histone. Oxalate binding activity is inhibited by lysine group modifiers such as 4',4'-diisothiostilbene-2,2-disulfonic acid (DIDS) and pyridoxal phosphate and reduced in presence of ATP and ADP. RNA has no effect on oxalate binding activity of H1B whereas DNA inhibits oxalate binding activity. Equilibrium dialysis method showed that H1B oxalate binding protein has two binding sites for oxalate, one with high affinity, other with low affinity. Histone H1B was modeled in silico using Modeller8v1 software tool since experimental structure is not available. In silico interaction studies predict that histone H1B-oxalate interaction take place through lysine121, lysine139, and leucine68. H1B oxalate binding protein is found to be a promoter of calcium oxalate crystal (CaOx) growth. A 10% increase in the promoting activity is observed in hyperoxaluric rat kidney H1B. Interaction of H1B oxalate binding protein with CaOx crystals favors the formation of intertwined calcium oxalate dehydrate (COD) crystals as studied by light microscopy. Intertwined COD crystals and aggregates of COD crystals were more pronounced in the presence of hyperoxalauric H1B.  相似文献   

5.
Synthetic hydroxyapatite (HA) and calcium pyrophosphate dihydrate (CPPD) microcrystals are phagocytosed by rabbit articular-cartilage chondrocytes in primary culture. The ingestion of crystals greatly stimulated the release of collagenase, neutral protease, and prostaglandins E2 and F2 alpha into the ambient medium. Lactate dehydrogenase was not released by either crystal despite electron microscopic evidence of cell damage by HA crystals (partial loss of phagolysosomal membrane and increased myelin figures). HA, but not CPPD crystals, stimulated release of beta-glucuronidase. HA crystal concentrations from 50 to 200 micrograms ml-1 induced a dose-dependent release of collagenase and of extracellular protein. Both phagocytosis and collagenase release were greatly attenuated when HA crystals were added to the chondrocyte monolayers in the absence of serum. As HA and CPPD crystals have been identified in human articular cartilage in association with degenerative changes, it is possible that the cell-crystal interaction described here may be pathogenetically important.  相似文献   

6.
Defects in an intracellular chloride channel CLC-5 cause Dent's disease, an inherited kidney stone disorder. Using a collecting duct model, mIMCD-3 cells, we show expression of dimeric mCLC-5. Transient transfection of antisense CLC-5 reduces CLC-5 protein expression. Binding of both calcium phosphate (hydroxyapatite) and calcium oxalate monohydrate (COM) crystals overlaid onto mIMCD-3 cultures was affected by altered CLC-5 expression. Calcium phosphate crystal agglomerations (>10 microm) were minimal in control (9%) and sense (13%) CLC-5-transfected cells, compared to 66% of antisense CLC-5-transfected cells (P<0.001). Small calcium phosphate crystals (<10 microm) were found associated with 45% of sense CLC-5-treated cells, of which the majority (11/14 cells) appeared to be internalised within the cell. Calcium oxalate agglomerations (>10 microm) were also largely absent for controls or sense mCLC-5 transfectants (11% and 9% of cells, respectively) with COM crystal agglomerates predominating in antisense CLC-5 transfectants (66%, P<0.0001). We conclude that collecting duct cells with reduced CLC-5 expression lead to a tendency to form calcium crystal agglomeration, which may help explain the nephrocalcinosis and nephrolithiasis seen in Dent's disease.  相似文献   

7.
Interaction of calcium oxalate monohydrate (COM) crystals with renal cells has been shown to result in altered gene expression, DNA synthesis, and cell death. In the current study the role of a stress-specific p38 MAP kinase-signaling pathway in mediating these effects of COM crystals was investigated. Exposure of cells to COM crystals (20 microg/cm(2)) rapidly stimulated strong phosphorylation and activation of p38 mitogen-activated protein kinase (p38 MAP kinase) and re-initiation of DNA synthesis. Inhibition of COM crystal binding to the cells by heparin blocked the effects of COM crystals on p38 MAPK activation. We also show that specific inhibition of p38 MAPK by 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl) imidazole (SB203580) or by overexpression of a dominant negative mutant of p38 MAP kinase abolishes COM crystal-induced re-initiation of DNA synthesis. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) activity in cell extracts. In summary, inhibiting activation of p38 MAPK pathway abrogated the DNA synthesis in response to COM crystals. These data are the first demonstrations of activation of the p38 MAPK signaling pathway by COM crystals and suggest that, in response to COM crystals, this pathway transduces critical signals governing the re-initiation of DNA synthesis in renal epithelial cells.  相似文献   

8.
Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp86–93). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp86–93 dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp86–93 followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp86–93 adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp86–93 sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp86–93 domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).Calcium oxalate is the major mineral phase of human renal calculi, constituting roughly 70% by weight of the stones (1). Two polymorphs of calcium oxalate, calcium oxalate monohydrate (COM)3 and calcium oxalate dihydrate (COD), are the most abundant mineral types, but others may exist in smaller amounts, including calcium phosphate minerals. It has been reported that the occurrence of COM, the more thermodynamically stable polymorph of calcium oxalate, is often at the core of most kidney stones and is approximately twice as frequent as COD (2), although both crystal types typically exist to some degree in most stones (3, 4). COM is commonly found in the urine of “stone formers,” but seldom is seen in healthy urine; on the other hand, COD crystals are typically found in the urine of both healthy people and stone formers and are routinely excreted during urination (57). Importantly, in patients with severe uremia and hypercalciuria, elongated, large rod-shaped COD crystals are not only often observed but are the sole mineral phase present in the kidneys in these pathologies (8, 9).In comparing physiologic differences between calcium oxalate polymorphs, one study has shown that for a given amount of added crystals, ∼50% more COM than COD crystals bound to inner medullary collecting duct cells in vitro (10). Other studies have reported that COD crystals are less prone than COM crystals to adhere to cell surfaces, suggesting that COD might, thus, contribute to a lesser degree than COM to the retention of mineral in the renal collecting ducts leading to kidney stone formation (5, 11). This is supported by the fact that COM crystals are large cationic particulates, presenting more calcium ions than COD crystals at their surface that would have a stronger affinity for anionic molecules on renal epithelial cell membranes (10, 12). Further to this, COM and COD crystals bind to cultured renal cells with different face-selective affinities (1316), and COM crystals are known to be more injurious to cell membranes than COD crystals (17). In this regard, Wesson et al. (1) proposed that the preferential formation of COD crystals in vivo protects against urolithiasis because they are less likely to adhere to renal tubular cells and are, thus, more readily excreted. This notion is supported by direct experimental measurements of the macromolecular adhesion force on specific crystal faces of COM or COD at the near-molecular level (13, 14). Given this, conversely, inhibition of the formation of COD crystals could lead to preferential COM deposition and the formation of kidney stones.Although calcium and oxalate ionic concentrations are frequently supersaturated with respect to both COM and COD mineral polymorphs, normal human urine likely contains factors that can modulate calcium oxalate crystallization into COD (10). In this context the presence of urinary macromolecular inhibitors of crystal growth can cause preferential crystallization of COD, rather than COM, from a supersaturated solution of calcium chloride and sodium oxalate (10). Substantial elegant work has been performed on COM growth and the effect of citrate and peptides/proteins as crystal growth modifiers. Some macromolecules, including urinary osteopontin (OPN), contain polyanionic regions and net negative charges that have been shown to inhibit calcium oxalate crystallization (14, 1821) and influence calcium oxalate growth in favor of COD (3, 10, 22, 23). Although there appears to be preferential inhibition of COM, several studies present evidence for higher affinity of OPN binding to COD, and here we investigate this further to show the effects of OPN (and a peptide of OPN) on COD crystal growth and provide information on peptide/protein occlusion that might facilitate crystal dissolution as originally proposed by Ryall et al. (see below) (23, 24).OPN is a highly acidic, glycosylated phosphoprotein produced by many types of epithelial cells and can be found in normal plasma and in various body fluids such as bile, urine, and milk (25, 26). In normal kidneys, OPN is secreted by the thin and thick ascending limbs of the loop of Henle and distal nephrons (2732). OPN contains a 15–20% aspartic acid residue content, and the mineral binding and inhibitory properties of OPN have often been partly attributed to an aspartic acid-rich sequence within this protein (10, 26, 33, 34). Likewise, post-translational phosphorylation of OPN has been shown to markedly enhance the mineral binding and inhibitory ability of this protein (34, 35). Furthermore, OPN also contains sialic acid (26, 27), which may play an indirect role in crystal binding by forming a bridge between transiently expressed crystal binding molecules and the cell surface (12). Several studies have shown that OPN has a higher affinity for COD than COM in normal urinal precipitates, with some evidence given for the incorporation of protein into calcium oxalate crystals (1, 23, 36).OPN consistently localizes to kidney stones (37) and at physiologically relevant concentrations applied in vitro, acts as a potent inhibitor of the nucleation, growth, and aggregation of calcium oxalate crystals (27, 30, 34). In a rat model of urolithiasis, although increased OPN mRNA expression was associated with increased renal calculi formation, the urinary excretion level of OPN was less than in controls, discussed as being attributable to incorporation of OPN into stones (37, 38). In general, the inclusion of OPN plus other urinary macromolecules into renal calculi has been suggested to be part of a cellular defense mechanism designed to inhibit crystal growth and limit the growth of kidney stones, to interrupt inorganic crystal structure of the calcium oxalate minerals, and to provide an organic volume whose degradation by permeating proteases creates channels facilitating dissolution of the mineral phase (23, 24). Given these possibilities, our aim was to determine whether full-length phosphorylated OPN and a poly-Asp peptide of OPN affect COD crystal growth and morphology, and if so, we further aimed to identify the contribution of face-specific binding and intracrystalline incorporation (occlusion) of OPN peptide into COD. Combining experimental and computational approaches, we have identified preferential binding and unique occlusion of a peptide of OPN at a specific crystallographic face of COD. Furthermore, we present a possible adsorption mechanism in a model where multiple peptide carboxylate groups bind calcium atoms at the COD {110} surface. Taken together, our findings provide new information on the pathogenesis of renal calculi by describing specific actions of phosphorylated full-length OPN and a short peptide sequence of OPN (not having post-translational modifications) on specific COD crystal faces that modulate calcium oxalate growth and crystal morphologies.  相似文献   

9.
The Isolation and Properties of Oxalate Crystals from Plants   总被引:2,自引:0,他引:2  
A method of isolation of crystalline inclusions of plant cellsis described. The crystals consist mainly of calcium oxalatein plants grown under normal conditions, but when calcium isreplaced by magnesium, barium, or strontium in the culture solutionthese elements substitute for calcium in the crystals; evenunder normal conditions magnesium occurs in the crystals tothe extent of about 2 per cent. The crystal morphology vanesin the species examined from raphides to complex conglomeratesand X-ray diffraction demonstrates an association of raphideswith calcium oxalate monohydrate whilst other solitary formsand conglomerates are associated with calcium oxalate 2.25H2O.On this basis the species examined can be divided mto threegroups.  相似文献   

10.
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.  相似文献   

11.
Interaction between hyaluronic acid (HA) present at the surface of tubular epithelial cells and calcium oxalate monohydrate (COM) crystals is thought to play an important role in kidney stone formation. AFM-based force spectroscopy, where HA is covalently attached to AFM-probes, was used to quantify the interaction between HA and the surfaces of COM crystals. The work of adhesion of the HA-probe as well as the rupture force of single HA molecules were quantified in order to understand the molecular regulation of HA binding to COM crystals. Our results reveal that HA adsorbs to the crystal surface in physiological conditions. We also observed increased adhesion when the pH is lowered to a value that increases the risk of kidney stone formation. HA adhesion to the COM crystal surface can be suppressed by citrate, a physiological inhibitor of stone retention currently used in the treatment and prevention of kidney stone formation. Interestingly, we also observed preferential binding of HA onto the [100] face versus the [010] face, suggesting a major contribution of the [100] faces in the crystal retention process at the surface of tubular epithelial cells and the promotion of stone formation. Our results clearly establish a direct role for the glycosaminoglycan HA present at the surface of kidney tubular epithelium in the process of COM crystal retention.  相似文献   

12.
Crystal retention on tubular cell surface inside renal tubules is considered as the earliest and crucial step for kidney stone formation. Therapeutics targeting this step would cease the development of kidney stone. This study thus aimed to investigate the potential role of epigallocatechin-3-gallate (EGCG), a major antioxidant found in green tea leaves, in the reduction of calcium oxalate monohydrate (COM) crystal binding onto renal tubular cells. Pretreatment of the cells with EGCG for up to 6 h significantly diminished crystal-binding capability in a dose-dependent manner. Indirect immunofluorescence assay without and with cell permeabilization followed by laser-scanning confocal microscopy revealed that EGCG significantly reduced surface expression of alpha-enolase, whereas its intracellular level was increased. Western blot analysis confirmed such contradictory changes in membrane and cytosolic fractions of EGCG-treated cells, whereas the total level in whole cell lysate remained unchanged. Moreover, overexpression of surface alpha-enolase and enhancement of cell–crystal adhesion induced by 10 mM sodium oxalate were completely abolished by EGCG. Taken together, these data indicate that EGCG decreases binding of COM crystals onto renal tubular cells by decreasing the surface expression of alpha-enolase via re-localization or inhibition of alpha-enolase shuttling from the cytoplasm to the plasma membrane. These findings may also explain the effects of EGCG in reducing COM crystal deposition in previous animal models of kidney stone disease. Thus, EGCG may be useful for the prevention of new or recurrent stone formation.  相似文献   

13.
During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.  相似文献   

14.
The anther connective tissue and hypodermal stomium between adjacent locules in the anthers of Capsicum annuum L. (Solanaceae) are the sites of formation of calcium salt crystals with four different habits. The spatial and temporal associations of these crystals and the idioblastic cells in which they form indicate that crystal sand occurs earliest in anther development near the single vascular strand, followed by spherulites and prismatic crystals farther out in the connective tissue, and finally druses occur in the hypodermal stomium. Both the druses and the crystal sand crystals are encased in crystal chambers and are associated with distinct membranes, whereas the spherulites and prismatic crystals are not bounded by any apparent membranes but they are surrounded by dense material that is rich in calcium and stains positively for polysaccharides and proteins. Quite often spherulites and prismatic crystals are observed within a single cell in contact with each other. X-ray diffraction of crystal preparations containing all four crystal habits and X-ray elemental analyses of single crystals, as well as visual observations and acid treatments, suggest that all four crystal habits consist of calcium oxalate. The hypodermal stomium and adjacent connective tissue degenerate at the pollen stage causing adjacent locules to fuse. Shortly afterward, each stomium epidermis splits open along the length of the anther releasing the pollen. It is suggested that the crystal idioblasts are involved in this process, possibly by a temporally orchestrated sequestration of calcium from both the cell cytoplasm and cell wall.  相似文献   

15.
R. H. Berg 《Protoplasma》1994,183(1-4):29-36
Summary Deciduous branchlets of casuarina trees have an unusual calcium oxalate-secreting system in which the epidermal tissue deposits calcium oxalate crystals in cell walls of the branchlet surface. These prismatic crystals were identified by light and electron microscopy, histochemistry, and elemental X-ray analysis. This calcium oxalate-secreting tissue was found in all species of casuarinas examined, including three of the four genera of the Casuarinaceae:Allocasuarina sp.,Casuarina sp., andGymnostoma papuanum. Because crystals were present throughout the epidermis soon after it formed, the mechanism for their induction was likely to be different than that for calcium oxalate crystal idioblasts. Secreting cells had a complex endoplasmic reticulum that may be involved in the secretory process.Abbreviations EDS energy-dispersive X-ray spectroscopy - HPF/FS high pressure-frozen/freeze-substituted - SEM scanning electron microscopy - TEM transmission electron microscopy Dedicated to the memory of Professor John G. Torrey  相似文献   

16.
Protein-crystal interactions are known to be important in biomineralization. To study the physicochemical basis of such interactions, we have developed a technique that combines confocal microscopy of crystals with fluorescence imaging of proteins. In this study, osteopontin (OPN), a protein abundant in urine, was labeled with the fluorescent dye AlexaFluor-488 and added to crystals of calcium oxalate monohydrate (COM), the major constituent of kidney stones. In five to seven optical sections along the z axis, scanning confocal microscopy was used to visualize COM crystals and fluorescence imaging to map OPN adsorbed to the crystals. To quantify the relative adsorption to different crystal faces, fluorescence intensity was measured around the perimeter of the crystal in several sections. Using this method, it was shown that OPN adsorbs with high specificity to the edges between {100} and {121} faces of COM and much less so to {100}, {121}, or {010} faces. By contrast, poly-L-aspartic acid adsorbs preferentially to {121} faces, whereas poly-L-glutamic acid adsorbs to all faces approximately equally. Growth of COM in the presence of rat bone OPN results in dumbbell-shaped crystals. We hypothesize that the edge-specific adsorption of OPN may be responsible for the dumbbell morphology of COM crystals found in human urine.  相似文献   

17.
Summary. Calcium oxalate crystals are by far the most prevalent and widely distributed mineral deposits in higher plants. In Tradescantia pallida, an evergreen perennial plant widely used as an ornamental plant, calcium oxalate crystals occur in the parenchymal tissues of stem, leaf, and root, as well as in flower organs, in the form of either raphides or tetragonal prismatic crystals or both. Energy-dispersive X-ray analysis revealed that C, O, and Ca were the main elements; and K, Cl, and Si, the minor elements. Infrared and X-ray analyses of crystals collected from these tissues detected the coexistence of two calcium oxalate chemical forms, i.e., whewellite and weddellite, as well as calcite, opal, and sylvite. Here, we show for the first time the occurrence of epitaxy in mineral crystals of plants. Epitaxy, which involves the oriented overgrowth of one crystal onto a second crystalline substrate, might explain how potassium chloride (sylvite) – one of the most water-soluble salts – stays insoluble in crystal form when coated with a calcium oxalate epilayer. The results indicate the potential role of crystals in regulating the ionic equilibrium of both calcium and potassium ions. Correspondence and reprints: Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA, Ciudad de Buenos Aires, Argentina.  相似文献   

18.

Background and Aims

Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia.

Methods

Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM.

Key Results

According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes.

Conclusions

The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals.  相似文献   

19.
Our previous expression study has reported a set of proteins with altered levels in renal tubular cells after exposure to calcium oxalate monohydrate (COM) crystals, which are the main composition of kidney stones. However, their functional significance remained largely unknown. In this study, protein network analysis revealed that the significantly altered proteins induced by COM crystals were involved mainly in three main functional networks, including i) cell proliferation and wound healing; ii) oxidative stress and mitochondrial function; and iii) cellular junction complex and integrity. Cell proliferation and wound healing assays showed that the COM‐treated cells had defective proliferation and tissue healing capability, respectively. Oxyblot analysis demonstrated accumulation of the oxidized proteins, whereas intracellular ATP level was significantly increased in the COM‐treated cells. Additionally, level of zonula occludens‐1 (ZO‐1), a tight junction protein, was significantly decreased, consistent with the significant declines in transepithelial resistance (TER) and level of RhoA signaling molecule in the COM‐treated cells. These findings indicate significant perturbations in mitochondrial and oxidative stress axis that cause defective cell proliferation, tissue healing capability, junctional protein complex, and cellular integrity of renal tubular epithelial cells exposed to COM crystals that may play important roles in kidney stone pathogenesis.  相似文献   

20.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号