首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Conventional cytogenetic analyses and comparative genomic hybridization have revealed a complex and even chaotic nature of chromosomal aberrations in pleural malignant mesothelioma (MM). We set out to describe the complex gene copy number changes and screen for novel genetic aberrations using a high-density oligonucleotide microarray platform for comparative genomic hybridization (aCGH) of a series of 26 well-characterized MM tumor samples. The number of copy number changes varied from zero to 40 per sample. Gene copy number losses predominated over gains, and the most frequent region of loss was 9p21.3 (17/26 cases), the locus of CDKN2A and CDKN2B, both known to be commonly lost in MM. The most recurrent minimal regions of losses were 1p31.1--> p13.2, 3p22.1-->p14.2, 6q22.1, 9p21.3, 13cen-->q14.12, 14q22.1-->qter, and 22qcen-->q12.3. Previously unreported gains included 9p13.3, 7p22.3-->p22.2, 12q13.3, and 17q21.32-->qter. The results suggest that gene copy number losses are a major mechanism of MM carcinogenesis and reveal a recurrent pattern of copy number changes in MM.  相似文献   

2.
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS.  相似文献   

3.
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%–30%), 8q24.3 (22%–48%), 13q34 (20%–31%), and 20q11-q13 (25%–30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%–23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.  相似文献   

4.
Oligonucleotide array comparative genomic hybridization (aCGH) was applied on fifteen gastric cancer (GCA) samples to reveal information of DNA copy number changes at an exon-level resolution. Twelve of the samples represented the intestinal (IGCA) and three the diffuse (DGCA) type of GCA. The samples had previously been assessed for genetic stability by microsatellite analysis and categorized into microsatellite phenotypes according to the type of alterations. As compared to our previous results obtained using cDNA platforms, the oligonucleotide platforms revealed more aberrations per sample (0-45 vs. 0-22). A total of 22 amplifications were detected by the oligonucleotide arrays. Ten of the amplicons had also been detected on the cDNA platform, but five of them spanned only one or a few cDNA clones, thus resembling apparent outliers. Two tumors showed five or more amplifications by oligonucleotide aCGH, suggesting the presence of an amplifier phenotype. The amplifications occurred irrespective of the microsatellite phenotypes. None of the DGCA tumors showed more than one aberration, whereas the IGCA tumors showed several aberrations. The increased resolution of the oligonucleotide arrays enabled the detection of amplicon boundaries at gene level, allowing, e.g., the determination of the 17q12 core amplicon and interstitial losses within the 8p23.1-->p22 and 20q13.2-->q13.1 amplifications. Previously no losses have been reported within amplified regions in GCA. In addition to novel amplified regions, the oligonucleotide array results describe novel targets for amplicons at 8p11 (SFRP1), 11p12 (LRRC4C), and 19q13.2 (CEACAM6).  相似文献   

5.
We reinvestigated rearrangements occurring in region q13 of chromosome 11 aiming to: (i) describe heterogeneity of the observed structural alterations, (ii) estimate amplicon size and (iii) identify of oncogenes involved in laryngeal cancer progression as potential targets for therapy. The study included 17 cell lines derived from laryngeal cancers and 34 specimens from primary laryngeal tumors. The region 11q13 was analyzed by fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and gene expression microarray. Next, quantitative real time PCR was used for chosen genes to confirm results from aCGH and gene expression microarray. The observed pattern of aberrations allows to distinguish three ways, in which gain and amplification involving 11q13 region may occur: formation of a homogeneously staining region; breakpoints in/near 11q13, which lead to the three to sevenfold increase of the copy number of 11q13 region; the presence of additional copies of the whole chromosome 11. The minimal altered region of gain and/or amplification was limited to ~1.8 Mb (chr.11:69,395,184–71,209,568) and comprised mostly 11q13.3 band which contain 12 genes. Five, out of these genes (CCND1, ORAOV1, FADD, PPFIA1, CTTN) had higher expression levels in comparison to healthy controls. Apart from CCND1 gene, which has an established role in pathogenesis of head and neck cancers, CTTN, ORAOV1 and FADD genes appear to be oncogene-candidates in laryngeal cancers, while a function of PPFIA1 requires further studies.  相似文献   

6.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

7.
The aim of the present study was to investigate chromosomal alterations in a large set of homogeneous tumors, 98 endometrioid adenocarcinomas. We also wanted to evaluate differences in chromosomal alterations in the different groups of tumors in relation to stage, survival and invasive or metastatic properties of the tumors. Comparative genomic hybridization (CGH) was used to detect chromosomal alterations in tissue samples from 98 endometrioid adenocarcinomas. All chromosomes were involved in DNA copy number variations at least once in the tumor material, but certain changes were recurrent and rather specific. Among the specific changes, it was possible to identify 39 chromosomal regions displaying frequent DNA copy number alterations. The most frequent alteration was detected at 1q25-->q42, in which gains were found in 30 cases (30%). Gains at 19pter-->p13.1 were detected in 26 tumors (26%) and at 19q13.1-->q13.3 in 19 tumors (19%). Increased copy numbers were also detected at 8q (8q21-->q22 and 8q22-->qter), at a relatively high rate, in 17 cases (17%). Furthermore, gains at 10q21-->q23 and 10p were found in 14 (14%) and 13 cases (13%), respectively. The most common losses were found in the three regions 4q22-->qter, 16q21-->qter and 18q21-->qter, all of which were detected in eight of the 98 tumors (8%). We also detected differences between the tumors from deceased patients and from survivors. Gain at 1q25-->q42 was more commonly detected in the tumors from patients who died of cancer. We noted that the regions most affected differed in the different surgical stages (I-IV). The results of the CGH analysis identify specific chromosomal regions affected by copy number changes, appropriate objects for further genetic studies.  相似文献   

8.
9.
Genetic gains and losses resulting from DNA strand breakage by ionizing radiation have been demonstrated in vitro and suspected in radiation-associated thyroid cancer. We hypothesized that copy number deviations might be more prevalent, and/or occur in genomic patterns, in tumors associated with presumptive DNA strand breakage from radiation exposure than in their spontaneous counterparts. We used cDNA microarray-based comparative genome hybridization to obtain genome-wide, high-resolution copy number profiles at 14,573 genomic loci in 23 post-Chernobyl and 20 spontaneous thyroid cancers. The prevalence of DNA gains in tumors from cases in exposed individuals was two- to fourfold higher than for cases in unexposed individuals and up to 10-fold higher for the subset of recurrent gains. DNA losses for all cases were low and more prevalent in spontaneous cases. We identified unique patterns of copy variation (mostly gains) that depended on a history of radiation exposure. Exposed cases, especially the young, harbored more recurrent gains that covered more of the genome. The largest regions, spanning 1.2 to 4.9 Mbp, were located at 1p36.32-.33, 2p23.2-.3, 3p21.1-.31, 6p22.1-.2, 7q36.1, 8q24.3, 9q34.11, 9q34.3, 11p15.5, 11q13.2-12.3, 14q32.33, 16p13.3, 16p11.2, 16q21-q12.2, 17q25.1, 19p13.31-qter, 22q11.21 and 22q13.2. Copy number changes, particularly gains, in post-Chernobyl thyroid cancer are influenced by radiation exposure and age at exposure, in addition to the neoplastic process.  相似文献   

10.
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.  相似文献   

11.
Amplification of 8q is frequently found in gastroesophageal junction (GEJ) cancer. It is usually detected in high-grade, high-stage GEJ adenocarcinomas. Moreover, it has been implicated in tumor progression in other cancer types. In this study, a detailed genomic analysis of 8q was performed on a series of GEJ adenocarcinomas, including 22 primary adenocarcinomas, 13 cell lines and two xenografts, by array comparative genomic hybridization (aCGH) with a whole chromosome 8q contig array. Of the 37 specimens, 21 originated from the esophagus and 16 were derived from the gastric cardia. Commonly overrepresented regions were identified at distal 8q, i.e. 124-125 Mb (8q24.13), at 127-128 Mb (8q24.21), and at 141-142 Mb (8q24.3). From these regions six genes were selected with putative relevance to cancer: ANXA13, MTSS1, FAM84B (alias NSE2), MYC, C8orf17 (alias MOST-1) and PTK2 (alias FAK). In addition, the gene EXT1 was selected since it was found in a specific amplification in cell line SK-GT-5. Quantitative RT-PCR analysis of these seven genes was subsequently performed on a panel of 24 gastroesophageal samples, including 13 cell lines, two xenografts and nine normal stomach controls. Significant overexpression was found for MYC and EXT1 in GEJ adenocarcinoma cell lines and xenografts compared to normal controls. Expression of the genes MTSS1, FAM84B and C8orf17 was found to be significantly decreased in this set of cell lines and xenografts. We conclude that, firstly, there are other genes than MYC involved in the 8q amplification in GEJ cancer. Secondly, the differential expression of these genes contributes to unravel the biology of GEJ adenocarcinomas.  相似文献   

12.
The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP)-arrays to define those chromosomal regions which most commonly harbour copy number (CN) alterations and loss of heterozygozity (LOH) in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70%) extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9) versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11). From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterogenity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.  相似文献   

13.
14.
Leiomyosarcomas comprise a group of malignant soft-tissue tumors with smooth-muscle differentiation. In this study, 14 cases of leiomyosarcoma were screened for changes in relative chromosome copy number by comparative genomic hybridization. A high number of imbalances (mean, 16.3; range, 6-26) was detected, with chromosomal gains occurring about twice as much as losses. The most frequent gains were found in 5p15, 8q24, 15q25-->q26, 17p, and Xp (43% to 50%), whereas the most frequent losses were found in 10q and 13q (50% and 78%, respectively). Twenty high-level amplifications affecting 15 different chromosomal subregions were detected in nine different tumors. In three leiomyosarcomas, sequences on chromosome arm 17p were found to be highly amplified, with a minimal overlapping region on subbands 17p12-->p11. We further discovered that the Smith-Magenis syndrome critical region on 17p11.2 is included in the 17p amplicons of two leiomyosarcoma cases. Using probes flanking this genetically unstable region, a mean of 14 and 22 signals per nucleus, respectively, was detected in both leiomyosarcomas by fluorescence in situ hybridization. In conclusion, this analysis identifies a number of characteristic chromosomal imbalances in leiomyosarcomas and provides evidence for the localization of potential oncogenes and tumor suppressor genes active in leiomyosarcoma genomes.  相似文献   

15.
The genetic features of B-cell chronic lymphocytic leukemia (CLL) are currently being reassessed by molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Conventional cytogenetic studies by chromosome banding are difficult in CLL mainly because of the low in vitro mitotic activity of the tumor cells, which leads to poor quantity and quality of metaphase spreads. Molecular genetic analyses are limited because candidate genes are known for only a few chromosomal aberrations that are observed in CLL. FISH was found to be a powerful tool for the genetic analysis of CLL as it overcomes both the low mitotic activity of the CLL cells and the lack of suitable candidate genes for analysis. Using FISH, the detection of chromosomal aberrations can be performed at the single cell level in both dividing and non-dividing cells, thus circumventing the need of metaphase preparations from tumor cells. Probes for the detection of trisomies, deletions and translocation breakpoints can be applied to the regions of interest with the growing number of clones available from genome-wide libraries. Using the interphase cytogenetic FISH approach with a disease specific set of probes, chromosome aberrations can be found in more than 80% of CLL cases. The most frequently observed abnormalities are losses of chromosomal material, with deletions in band 13q14 being the most common, followed by deletions in 11q22-q23, deletions in 17p13 and deletions in 6q21. The most common gains of chromosomal material are trisomies 12q, 8q and 3q. Translocation breakpoints, in particular involving the immunoglobulin heavy chain locus at 14q32, which are frequently observed in other types of non-Hodgkin's lymphoma, are rare events in CLL. Genes affected by common chromosome aberrations in CLL appear to be p53 in cases with 17p deletion and ataxia telangiectasia mutated (ATM), which is mutated in a subset of cases with 11q22-q23 aberrations. However, for the other frequently affected genomic regions, the search for candidate genes is ongoing. In parallel, the accurate evaluation of the incidence of chromosome aberrations in CLL by FISH allows the correlation of genetic abnormalities with clinical disease manifestations and outcome. In particular, 17p abnormalities and deletions in 11q22-q23 have already been shown to be among the most important independent prognostic factors identifying subgroups of patients with rapid disease progression and short survival. In addition, deletion 17p has been associated with resistance to treatment with purine analogs. Therefore, genetic abnormalities may allow a risk assessment for individual patients at the time of diagnosis, thus giving the opportunity for a risk-adapted management.  相似文献   

16.

Background

For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them.

Methodology/Principal Findings

Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations.

Conclusions/Significance

In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process.  相似文献   

17.
In order to identify relevant genetic lesions in gastric carcinoma, we searched for tumor suppressor gene inactivation and K-ras gene mutations by analyzing tumor and control DNAs from 34 patients. These were from an epidemiologically defined area of Italy characterized by one of the world's highest incidences of stomach cancer. Allele losses were investigated by the Southern blotting procedure at 16 polymorphic loci on 11 different chromosomes. Our data demonstrate that chromosomal regions 5q, 11p, 17p and 18q are frequently deleted, and that 7q and 13q chromosome arms are also involved, although at a lower frequency. Loss of heterozygosity (LOH) at region 11p was not found during other surveys carried out on patients of different geographic origins. No specific combination of allelic losses could be recognized in the samples analyzed, the only exception being that tumors with 17p allelic loss also showed LOH on the 18q region. When matching frequent LOH events and the stage of progression of the tumors, we observed a trend of association between advanced stages and allelic losses on 17p and 18q chromosome arms. The analysis of K-ras, carried out by the polymerase chain reaction and denaturing gradient gel electrophoresis, demonstrated transforming mutations in only 3 out of 32 cases. Colorectal tumorigenesis proceeds by the accumulation of genetic alterations, including K-ras mutations and inactivation of tumor suppressor genes on the 5q, 17p and 18q regions. Our data indicate that, although gastric and colorectal neoplasias share common genetic alterations, they probably progress through different pathways.  相似文献   

18.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

19.
Identifying oral cancer lesions associated with high risk of relapse and predicting clinical outcome remain challenging questions in clinical practice. Genomic alterations may add prognostic information and indicate biological aggressiveness thereby emphasizing the need for genome-wide profiling of oral cancers. High-resolution array comparative genomic hybridization was performed to delineate the genomic alterations in clinically annotated primary gingivo-buccal complex and tongue cancers (n = 60). The specific genomic alterations so identified were evaluated for their potential clinical relevance. Copy-number changes were observed on chromosomal arms with most frequent gains on 3q (60%), 5p (50%), 7p (50%), 8q (73%), 11q13 (47%), 14q11.2 (47%), and 19p13.3 (58%) and losses on 3p14.2 (55%) and 8p (83%). Univariate statistical analysis with correction for multiple testing revealed chromosomal gain of region 11q22.1–q22.2 and losses of 17p13.3 and 11q23–q25 to be associated with loco-regional recurrence (P = 0.004, P = 0.003, and P = 0.0003) and shorter survival (P = 0.009, P = 0.003, and P 0.0001) respectively. The gain of 11q22 and loss of 11q23-q25 were validated by interphase fluorescent in situ hybridization (I-FISH). This study identifies a tractable number of genomic alterations with few underlying genes that may potentially be utilized as biological markers for prognosis and treatment decisions in oral cancers.  相似文献   

20.
Comparative genomic hybridization (CGH) has been applied to characterize 61 primary renal cell carcinomas derived histogenetically from the proximal tubulus. The tumor samples comprised 46 clear-cell renal cell carcinomas (ccRCCs) and 15 papillary renal cell carcinomas (pRCCs). Changes in the copy number of entire chromosomes or subregions were detected in 56 tumors (92%). In ccRCCs, losses of chromosome 3 or 3p (63%); 14q (30%); 9 (26%); 1 and 6 or 6q (17% each); 4 and 8 or 8p (15% each); 22 (11%); 2 or 2q and 19 (9% each); 7q, 10, 16, 17p, 18, and Y (7% each); and 5, 11, 13, 15, and 21 (4% each) were detected. Most frequent genomic gains in ccRCC were found on chromosome 5 (63%); 7 (35%); 1 or 1q (33%); 2q (24%); 8 or 8q, 12, and 20 (20% each); 3q (17%); 16 (15%); 19 (13%); 6 and 17 or 17q (11% each); and 4, 10, 11, 21, and Y (9% each). In pRCCs, gains in the copy number of chromosomes 7 and 17 (7/15, each) and 16 and 20 (6/15, each) were frequent. One pRCC showed amplification of subchromosome regions 2q22-->q33, 16q, 17q and the entire X chromosome. In pRCC, losses were less frequently seen than gains. Losses of chromosomes 1, 14, 15, and Y (3/15 each) and 2, 4, 6, and 13 (2/15 each) were observed. In ccRCCs, statistical evaluation revealed significant correlations of chromosomal imbalances with tumor stage and grade, i.e., a gain in copy number of chromosome 5 correlated positively with low tumor grade, whereas a gain of chromosomes 10 and 17 correlated positively with high tumor grade. Furthermore, loss of chromosome 4 correlated positively with high tumor stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号