首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.  相似文献   

2.
Uridine-5'-diphospho-1-alpha-d-glucose (UDP-Glc) is a common substrate used by glucosyltransferases, including certain bacterial toxins such as Toxins A and B from Clostridium difficile. Fluorescent analogs of UDP-Glc have been prepared for use in our studies of the clostridial toxins. These compounds are related to the methylanthraniloyl-ATP compounds commonly used to probe the chemistry of ATP-dependent enzymes. The reaction of excess methylisatoic anhydride with UDP-Glc in aqueous solution yields primarily the 2' and 3' isomers of methylanthraniloyl-UDP-Glc (MUG). As the 2' and 3' isomers readily interconvert, this isomeric mixture was copurified by HPLC away from the other isomeric products, and was characterized by a combination of NMR, fluorescence and mass spectrometric methods. TcdA binds MUG competitively with respect to UDP-Glc with an affinity of 15 +/- 2 microm in the absence of Mg2+. There is currently no evidence that the fluorescent substrate analog is turned over by the toxin in either glucosyltransferase or glucosylhydrolase reactions. Using a competition assay, the affinity of UDP-Glc was determined to be 45+/-10 microm in the absence of Mg2+. The binding of UDP-Glc and Mg2+ are highly coupled with Mg2+ affinities in the range of 90-600 microm, depending on the experimental conditions. These results imply that one of the significant roles of the metal ion might be to stabilize the enzyme-substrate complex prior to initiation of the transferase chemistry.  相似文献   

3.
Rupnik M  Grabnar M  Geric B 《Anaerobe》2003,9(6):289-294
Clostridium difficile produces three toxins, TcdA, TcdB and CDT. TcdA and TcdB are single-stranded molecules acting as glucosyltransferases specific for small GTPases. CDT is an actin specific ADP-ribosylating binary toxin characteristically composed of two independent components, enzymatic CDTa (48 kDa) and binding CDTb (99 kDa). The cdtA and cdtB genes were sequenced in two CDT-positive strains of C. difficile (CD 196 and 8864) and at least two CDT-negative strains with truncated form of binary toxin genes are known (VPI 10463 and C. difficile genome strain 630). The prevalence of binary toxin producing strains is estimated to be from 1.6% to 5.5%, although a much higher proportion has been reported in some studies. The role of the binary toxin as an additional virulence factor is discussed.  相似文献   

4.
The large cytotoxins of Clostridia species glycosylate and thereby inactivate small GTPases of the Rho family. Clostridium difficile toxins A and B and Clostridium sordellii lethal toxin use UDP-glucose as the donor for glucosylation of Rho/Ras GTPases. In contrast, alpha-toxin from Clostridium novyi N-acetylglucosaminylates Rho GTPases by using UDP-N-acetylglucosamine as a donor substrate. Based on the crystal structure of C. difficile toxin B, we studied the sugar donor specificity of the toxins by site-directed mutagenesis. The changing of Ile-383 and Gln-385 in toxin B to serine and alanine, respectively, largely increased the acceptance of UDP-N-acetylglucosamine as a sugar donor for modification of RhoA. The K(m) value was reduced from 960 to 26 mum for the double mutant. Accordingly, the potential of the double mutant of toxin B to hydrolyze UDP-N-acetylglucosamine was higher than that for UDP-glucose. The changing of Ile-383 and Gln-385 in the lethal toxin of C. sordellii allowed modification of Ras in the presence of UDP-N-acetyl-glucosamine and reduced the acceptance of UDP-glucose as a donor for glycosylation. Vice versa, the changing of the equivalent residues in C. novyi alpha-toxin from Ser-385 and Ala-387 to isoleucine and glutamine, respectively, reversed the donor specificity of the toxin from UDP-N-acetylglucosamine to UDP-glucose. These data demonstrate that two amino acid residues are crucial for the co-substrate specificity of clostridial glycosylating toxins.  相似文献   

5.
M D Lobban  S P Borriello 《FEBS letters》1992,298(2-3):185-187
Binding of nucleotides, a tetrapolyphosphate, and NAD+ to purified toxin A of Clostridium difficile was determined by monitoring changes in intrinsic fluorescence following excitation at 280 nm, and recording emissions at 340 nm. Binding was specific for concentrations over the range 5 to 100 microM for ATP, GTP, and their respective non-hydrolysable analogues AMP-PNP and Gpp(NH)p, tetrapolyphosphate and NAD+.  相似文献   

6.
Clostridium difficile TcdA is a large toxin that binds carbohydrates on intestinal epithelial cells. A 2-A resolution cocrystal structure reveals two molecules of alpha-Gal-(1,3)-beta-Gal-(1,4)-beta-GlcNAcO(CH(2))(8)CO(2)CH(3) binding in an extended conformation to TcdA. Residues forming key contacts with the trisaccharides are conserved in all seven putative binding sites in TcdA, suggesting a mode of multivalent binding that may be exploited for the rational design of novel therapeutics.  相似文献   

7.
8.
The mouse lethality test is the most sensitive method for confirming the diagnosis of infant botulism. Both Clostridium difficile and Clostridium botulinum produce heat-labile toxins which are lethal for mice and can be found in the feces of infants. These two toxins can be distinguished from one another in this assay when both are present in the same fecal specimen because they appear to be immunologically distinct toxins.  相似文献   

9.
Toxin B is a member of the family of large clostridial cytotoxins which are of great medical importance. Its catalytic fragment was crystallized in the presence of UDP-glucose and Mn2+. The structure was determined at 2.2 A resolution, showing that toxin B belongs to the glycosyltransferase type A family. However, toxin B contains as many as 309 residues in addition to the common chainfold, which most likely contribute to the target specificity. A superposition with other glycosyltransferases shows the expected positions of the acceptor oxygen atom during glucosyl transfer and indicates further that the reaction proceeds probably along a single-displacement pathway. The C1' donor carbon atom position is defined by the bound UDP and glucose. It assigns the surface area of toxin B that forms the interface to the target protein during the modifying reaction. A docking attempt brought the known acceptor atom, Thr37 O(gamma1) of the switch I region of the RhoA:GDP target structure, near the expected position. The relative orientation of the two proteins was consistent with both being attached to a membrane. Sequence comparisons between toxin B variants revealed that the highest exchange rate occurs around the active center at the putative docking interface, presumably due to a continuous hit-and-evasion struggle between Clostridia and their eukaryotic hosts.  相似文献   

10.
CD9 associates with a diphtheria toxin receptor (DTR) that is identical to the membrane-anchored form of heparin-binding EGF-like growth factor. We determined the region of CD9 important for upregulation activity. Human and monkey CD9 upregulates DT binding activity of DTR, while mouse CD9 has no upregulation activity. Transfection of chimeric constructs comprising monkey and mouse CD9s showed that the human sequence between Ala156 and Asp183 is essential for the upregulation activity. Studies of mutants, replacing a single amino acid within the region between Ala156 and Asp183 of monkey CD9 with the corresponding amino acid residue in mouse CD9, revealed that substitution of Gly158 is critical for the reduction of the upregulation activity and secondly for the substitution of Val159 and Thr175. These three amino acid residues were deduced to be located on the head domain of the second extracellular loop, suggesting that interactions of CD9 with DTR or DT at the domain containing these three amino acids were important for the upregulation of DT binding.  相似文献   

11.
12.
13.
The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram-positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr-Ser45-P does not stimulate CcpA-dependent binding to DNA targets. However, fructose-1,6-biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr-Ser45-P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile.  相似文献   

14.
The large clostridial cytotoxins toxin A and toxin B from Clostridium difficile are major virulence factors known to cause antibiotic-associated diarrhea and pseudomembranous colitis. Both toxins mono-glucosylate and thereby inactivate small GTPases of the Rho family. Recently, it was reported that toxin B, but not toxin A, induces pore formation in membranes of target cells under acidic conditions. Here, we reassessed data on pore formation of toxin A in cells derived from human colon carcinoma. Treatment of 86Rb+-loaded cells with native or recombinant toxin A resulted in an increased efflux of radioactive cations induced by an acidic pulse. The efficacy of pore formation was dependent on membrane cholesterol, since cholesterol depletion of membranes with methyl-beta-cyclodextrin inhibited 86Rb+ efflux, and cholesterol repletion reconstituted pore-forming activity of toxin A. Similar results were obtained with toxin B. Consistently, methyl-beta-cyclodextrin treatment delayed intoxication of cells in a concentration-dependent manner. In black lipid membranes, toxin A induced ion-permeable pores only in cholesterol containing bilayers and at low pH. In contrast, release of glycosylphosphatidylinositol-anchored structures by phosphatidylinositol specific phospholipase C treatment did not reduce cell sensitivity toward toxins A and B. These data indicate that in colonic cells toxin A induces pore formation in an acidic environment (e.g. endosomes) similar to that reported for toxin B and suggest that pore formation by clostridial glucosylating toxins depends on the presence of cholesterol.  相似文献   

15.
Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.  相似文献   

16.
Clostridium difficile is a major enteropathogen of humans. It produces two main virulence factors, toxins A and B. A third, less well known toxin, C. difficile toxin (CDT), is a binary toxin composed of distinct enzymatic (CdtA) and cell binding/translocation (CdtB) proteins. We used a novel enzyme linked immunoassay (EIA) to detect CdtB protein in feces and culture fluids. Additionally, PCR was used to assay C. difficile isolates from fecal samples for the CDT locus (CdtLoc). Although the results from 80 isolates suggest no relationship between toxin concentrations in situ and in vitro, there is a good correlation between PCR detection of the cdtB gene and EIA detection of CdtB protein in vitro. Possible implications of the detection of CDT in patients are discussed.  相似文献   

17.
《MABS-AUSTIN》2013,5(2):190-198
The pathogenicity of Clostridium difficile (C. difficile) is mediated by the release of two toxins, A and B. Both toxins contain large clusters of repeats known as cell wall binding (CWB) domains responsible for binding epithelial cell surfaces. Several murine monoclonal antibodies were generated against the CWB domain of toxin A and screened for their ability to neutralize the toxin individually and in combination. Three antibodies capable of neutralizing toxin A all recognized multiple sites on toxin A, suggesting that the extent of surface coverage may contribute to neutralization. Combination of two noncompeting antibodies, denoted 3358 and 3359, enhanced toxin A neutralization over saturating levels of single antibodies. Antibody 3358 increased the level of detectable CWB domain on the surface of cells, while 3359 inhibited CWB domain cell surface association. These results suggest that antibody combinations that cover a broader epitope space on the CWB repeat domains of toxin A (and potentially toxin B) and utilize multiple mechanisms to reduce toxin internalization may provide enhanced protection against C. difficile-associated diarrhea.  相似文献   

18.
19.
CodY, a global regulator of gene expression in low G + C Gram-positive bacteria, was found to repress toxin gene expression in Clostridium difficile. Inactivation of the codY gene resulted in derepression of all five genes of the C. difficile pathogenicity locus during exponential growth and stationary phase. CodY was found to bind with high affinity to a DNA fragment containing the promoter region of the tcdR gene, which encodes a sigma factor that permits RNA polymerase to recognize promoters of the two major toxin genes as well as its own promoter. CodY also bound, but with low affinity, to the toxin gene promoters, suggesting that the regulation of toxin gene expression by CodY occurs primarily through direct control of tcdR gene expression. Binding of CodY to the tcdR promoter region was enhanced in the presence of GTP and branched-chain amino acids, suggesting a link between nutrient limitation and the expression of C. difficile toxin genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号