首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

2.
Studies involving pharmacologic or molecular biologic manipulation of Group VIA phospholipase A(2) (iPLA(2)beta) activity in pancreatic islets and insulinoma cells suggest that iPLA(2)beta participates in insulin secretion. It has also been suggested that iPLA(2)beta is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels and arachidonate incorporation into phosphatidylcholine (PC). We have generated iPLA(2)beta-null mice by homologous recombination and have reported that they exhibit reduced male fertility and defective motility of spermatozoa. Here we report that pancreatic islets from iPLA(2)beta-null mice have impaired insulin secretory responses to D-glucose and forskolin. Electrospray ionization mass spectrometric analyses indicate that the abundance of arachidonate-containing PC species of islets, brain, and other tissues from iPLA(2)beta-null mice is virtually identical to that of wild-type mice, and no iPLA(2)beta mRNA was observed in any tissue from iPLA(2)beta-null mice at any age. Despite the insulin secretory abnormalities of isolated islets, fasting and fed blood glucose concentrations of iPLA(2)beta-null and wild-type mice are essentially identical under normal circumstances, but iPLA(2)beta-null mice develop more severe hyperglycemia than wild-type mice after administration of multiple low doses of the beta-cell toxin streptozotocin, suggesting an impaired islet secretory reserve. A high fat diet also induces more severe glucose intolerance in iPLA(2)beta-null mice than in wild-type mice, but PLA(2)beta-null mice have greater responsiveness to exogenous insulin than do wild-type mice fed a high fat diet. These and previous findings thus indicate that iPLA(2)beta-null mice exhibit phenotypic abnormalities in pancreatic islets in addition to testes and macrophages.  相似文献   

3.
Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet beta-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet beta-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 mum) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary beta-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca(2+)] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A(2) (iPLA(2)beta) hydrolyzes beta-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA(2)beta prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in beta-cells from iPLA(2)beta(-/-) mice. Stably transfected INS-1 cells that overexpress iPLA(2)beta hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet beta-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca(2+) entry and insulin secretion.  相似文献   

4.
5.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

6.
Insulin-secreting pancreatic islet beta-cells express a Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) that contains a calmodulin binding site and protein interaction domains. We identified Ca(2+)/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) as a potential iPLA(2)beta-interacting protein by yeast two-hybrid screening of a cDNA library using iPLA(2)beta cDNA as bait. Cloning CaMKIIbeta cDNA from a rat islet library revealed that one dominant CaMKIIbeta isoform mRNA is expressed by adult islets and is not observed in brain or neonatal islets and that there is high conservation of the isoform expressed by rat and human beta-cells. Binary two-hybrid assays using DNA encoding this isoform as bait and iPLA(2)beta DNA as prey confirmed interaction of the enzymes, as did assays with CaMKIIbeta as prey and iPLA(2)beta bait. His-tagged CaMKIIbeta immobilized on metal affinity matrices bound iPLA(2)beta, and this did not require exogenous calmodulin and was not prevented by a calmodulin antagonist or the Ca(2+) chelator EGTA. Activities of both enzymes increased upon their association, and iPLA(2)beta reaction products reduced CaMKIIbeta activity. Both the iPLA(2)beta inhibitor bromoenol lactone and the CaMKIIbeta inhibitor KN93 reduced arachidonate release from INS-1 insulinoma cells, and both inhibit insulin secretion. CaMKIIbeta and iPLA(2)beta can be coimmunoprecipitated from INS-1 cells, and forskolin, which amplifies glucose-induced insulin secretion, increases the abundance of the immunoprecipitatable complex. These findings suggest that iPLA(2)beta and CaMKIIbeta form a signaling complex in beta-cells, consistent with reports that both enzymes participate in insulin secretion and that their expression is coinduced upon differentiation of pancreatic progenitor to endocrine progenitor cells.  相似文献   

7.
Many cells express a Group VIA phospholipase A2, designated iPLA2beta, that does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate (BEL). Studies in various cell systems have led to the suggestion that iPLA2beta has a role in phospholipid remodeling, signal transduction, cell proliferation, and apoptosis. We have found that pancreatic islets, beta-cells, and glucose-responsive insulinoma cells express an iPLA2beta that participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. Additionally, recent studies reveal that iPLA2beta is involved in pathways that contribute to beta-cell proliferation and apoptosis, and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the enzyme suggests that the beta-cells express multiple isoforms of iPLA2beta, and we hypothesize that these participate in different cellular functions.  相似文献   

8.
GABA has been proposed to inhibit insulin secretion through GABAB receptors (GABABRs) in pancreatic beta-cells. We investigated whether GABABRs participated in the regulation of glucose homeostasis in vivo. The animals used in this study were adult male and female BALB/C mice, mice deficient in the GABAB1 subunit of the GABABR (GABAB(-/-)), and wild types (WT). Blood glucose was measured under fasting/fed conditions and in glucose tolerance tests (GTTs) with a Lifescan Glucose meter, and serum insulin was measured by ELISA. Pancreatic insulin content and islet insulin were released by RIA. Western blots for the GABAB1 subunit in islet membranes and immunohistochemistry for insulin and GABAB1 were performed in both genotypes. BALB/C mice preinjected with Baclofen (GABABR agonist, 7.5 mg/kg ip) presented impaired GTTs and decreased insulin secretion compared with saline-preinjected controls. GABAB(-/-) mice showed fasting and fed glucose levels similar to WT. GABAB(-/-) mice showed improved GTTs at moderate glucose overloads (2 g/kg). Baclofen pretreatment did not modify GTTs in GABAB(-/-) mice, whereas it impaired normal glycemia reinstatement in WT. Baclofen inhibited glucose-stimulated insulin secretion in WT isolated islets but was without effect in GABAB(-/-) islets. In GABAB(-/-) males, pancreatic insulin content was increased, basal and glucose-stimulated insulin secretion were augmented, and impaired insulin tolerance test and increased homeostatic model assessment of insulin resistance index were determined. Immunohistochemistry for insulin demonstrated an increase of very large islets in GABAB(-/-) males. Results demonstrate that GABABRs are involved in the regulation of glucose homeostasis in vivo and that the constitutive absence of GABABRs induces alterations in pancreatic histology, physiology, and insulin resistance.  相似文献   

9.
Accumulating evidence suggests that the cytosolic calcium-independent phospholipase A(2) (iPLA(2)beta) manifests a signaling role in insulin-secreting (INS-1) beta-cells. Earlier, we reported that insulin-secretory responses to cAMP-elevating agents are amplified in iPLA(2)beta-overexpressing INS-1 cells (Ma Z, Ramanadham S, Bohrer A, Wohltmann M, Zhang S, and Turk J. J Biol Chem 276: 13198-13208, 2001). Here, immunofluorescence, immunoaffinity, and enzymatic activity analyses are used to examine distribution of iPLA(2)beta in stimulated INS-1 cells in greater detail. Overexpression of iPLA(2)beta in INS-1 cells leads to increased accumulation of iPLA(2)beta in the nuclear fraction. Increasing glucose concentrations alone results in modest increases in insulin secretion, relative to parental cells, and in nuclear accumulation of the iPLA(2)beta protein. In contrast, cAMP-elevating agents induce robust increases in insulin secretion and in time-dependent nuclear accumulation of iPLA(2)beta fluorescence, which is reflected by increases in nuclear iPLA(2)beta protein content and specific enzymatic activity. The stimulated effects are significantly attenuated in the presence of cell-permeable inhibitors of protein phosphorylation and glycosylation. These findings suggest that conditions that amplify insulin secretion promote translocation of beta-cell iPLA(2)beta to the nuclei, where it may serve a crucial signaling role.  相似文献   

10.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

11.
Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.  相似文献   

12.
The FRK tyrosine kinase has previously been shown to transduce beta-cell cytotoxic signals in response to cytokines and streptozotocin and to promote beta-cell proliferation and an increased beta-cell mass. We therefore aimed to further evaluate the effects of overexpression of FRK tyrosine kinase in beta-cells. A transgenic mouse expressing kinase-active FRK under control of the insulin promoter (RIP-FRK) was studied with regard to islet endocrine function and vascular morphology. Mild glucose intolerance develops in RIP-FRK male mice of at least 4 mo of age. This effect is accompanied by reduced glucose-stimulated insulin secretion in vivo and reduced second-phase insulin secretion in response to glucose and arginine upon pancreas perfusion. Islets isolated from the FRK transgenic mice display a glucose-induced insulin secretory response in vitro similar to that of control islets. However, islet blood flow per islet volume is decreased in the FRK transgenic mice. These mice also exhibit a reduced islet capillary lumen diameter as shown by electron microscopy. Total body weight and pancreas weight are not significantly affected, but the beta-cell mass is increased. The data suggest that long-term expression of active FRK in beta-cells causes an in vivo insulin-secretory defect, which may be the consequence of islet vascular abnormalities that yield a decreased islet blood flow.  相似文献   

13.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

14.
Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets.  相似文献   

15.
为了考察20-羟基二十碳四烯酸(20-hydroxyeicosatetraenoic acids, 20-HETE)对葡萄糖刺激胰岛素分泌反应的影响,本研究选择CYP4F2转基因小鼠和小鼠胰岛素瘤INS-1E细胞作为研究材料,通过LCMS/MS检测WT和TG小鼠的胰腺20-HETE水平。通过IPGTT测定小鼠葡萄糖耐量,通过ELISA测定小鼠血浆C肽水平来检测胰岛素分泌。通过Western blotting、Real time PCR、免疫组化和免疫荧光来检测小鼠胰腺或INS-1E细胞中Glut2、GSK-3β(Ser9点)和AKT (Ser473点)的磷酸化水平。TG小鼠的20-HETE水平((7.26±2.03) ng/mg蛋白)显著高于WT小鼠((2.14±0.76) ng/mg蛋白)。在用20-HETE合成的选择性抑制剂HET0016处理后,TG小鼠((0.33±0.07) ng/mg蛋白)和WT小鼠((0.27±0.06) ng/mg蛋白)胰腺组织中的20-HETE水平均急剧降低。给予葡萄糖处理30 min后,TG小鼠的血糖水平均显著高于WT小鼠,而血浆C肽水平显著低于WT小鼠(p<0.05)。与WT小鼠相比,TG小鼠的胰腺组织中Glut2 m RNA和蛋白水平显著降低。与WT小鼠相比,CYP4F2转基因小鼠的GSK-3β和AKT磷酸化均显著降低。20-HETE处理可导致INS-1E细胞中AKT/GSK-3β磷酸化水平和Glut2表达水平显著降低(p<0.05)。此外,用17 mmol/L葡萄糖处理INS-1E细胞1 h,20-HETE处理组的胰岛素分泌显著降低。应用GSK-3β选择性抑制剂TWS119预处理INS-1E细胞3 h后,TWS119 (一种GSK-3β选择性抑制剂)预处理显著逆转了Glut2表达水平的降低以及胰岛素分泌的减少。20-HETE主要通过AKT/GSK-3β信号通路来下调Glut2的表达,进而减弱胰岛素分泌,导致胰岛素分泌功能障碍。  相似文献   

16.
BACKGROUND: This study was undertaken to examine putative mechanisms of calcium independent signal transduction pathway of cell swelling-induced insulin secretion. METHODS: The role of phospholipase A(2), G proteins, and soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) in insulin secretion induced by 30% hypotonic medium was studied using isolated rat pancreatic islets. RESULTS: In contrast to glucose stimulation, osmotically induced insulin secretion from pancreatic islets was not inhibited by 10 micromol/l bromoenol lactone, an iPLA(2) (Ca(2+) independent phospholipase) inhibitor. Similarly, preincubation of islets for 20 hours with 25 microg/ml mycophenolic acid to inhibit GTP synthesis fully abolished glucose-induced insulin secretion but was without effect on hypotonicity stimulated insulin release. Glucose-induced insulin secretion was prevented by preincubation with 20 nmol/l tetanus toxin (TeTx), a metalloprotease inactivating soluble SNARE. Cell swelling-induced insulin secretion was inhibited by TeTx in the presence of calcium ions but not in calcium depleted medium. The presence of N-ethylmaleimide (NEM, 5 mmol/l, another inhibitor of SNARE proteins) in the medium resulted in high basal insulin secretion and lacking response to glucose stimulation. In contrast, high basal insulin secretion from NEM treated islets further increased after hypotonic stimulation. CONCLUSION: G proteins and iPLA(2) - putative mediators of Ca(2+) independent signaling pathway participate in glucose but not in hypotonicity-induced insulin secretion. Hypotonicity-induced insulin secretion is sensitive to clostridial neurotoxin TeTx but is resistant to NEM.  相似文献   

17.
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion.  相似文献   

18.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

19.
Group VIA phospholipase A(2) (iPLA(2)β) in pancreatic islet β-cells participates in glucose-stimulated insulin secretion and sarco(endo)plasmic reticulum ATPase (SERCA) inhibitor-induced apoptosis, and both are attenuated by pharmacologic or genetic reductions in iPLA(2)β activity and amplified by iPLA(2)β overexpression. While exploring signaling events that occur downstream of iPLA(2)β activation, we found that p38 MAPK is activated by phosphorylation in INS-1 insulinoma cells and mouse pancreatic islets, that this increases with iPLA(2)β expression level, and that it is stimulated by the iPLA(2)β reaction product arachidonic acid. The insulin secretagogue D-glucose also stimulates β-cell p38 MAPK phosphorylation, and this is prevented by the iPLA(2)β inhibitor bromoenol lactone. Insulin secretion induced by d-glucose and forskolin is amplified by overexpressing iPLA(2)β in INS-1 cells and in mouse islets, and the p38 MAPK inhibitor PD169316 prevents both responses. The SERCA inhibitor thapsigargin also stimulates phosphorylation of both β-cell MAPK kinase isoforms and p38 MAPK, and bromoenol lactone prevents both events. Others have reported that iPLA(2)β products activate Rho family G-proteins that promote MAPK kinase activation via a mechanism inhibited by Clostridium difficile toxin B, which we find to inhibit thapsigargin-induced β-cell p38 MAPK phosphorylation. Thapsigargin-induced β-cell apoptosis and ceramide generation are also prevented by the p38 MAPK inhibitor PD169316. These observations indicate that p38 MAPK is activated downstream of iPLA(2)β in β-cells incubated with insulin secretagogues or thapsigargin, that this requires prior iPLA(2)β activation, and that p38 MAPK is involved in the β-cell functional responses of insulin secretion and apoptosis in which iPLA(2)β participates.  相似文献   

20.
BACKGROUND: The Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated. MATERIALS AND METHODS: A gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice. RESULTS: Western blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin. CONCLUSION: The results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号