首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
2.
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.  相似文献   

3.
Paget's disease (PD) of bone is a chronic focal skeletal disorder characterized by excessive bone resorption followed by abundant new bone formation. Enhanced levels of IL-6, RANKL, M-CSF, and endothelin-1 have been associated with PD. In the present study, we identified increased serum levels (2 to 5-fold) of inflammatory cytokine, kininogen (KNG) in patients with PD compared to normal subjects. Treatment of pagetic bone marrow derived stromal/preosteoblast cells with recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho-HSP27 and a 3-fold increase in ERK1/2 phosphorylation in these cells. However, pagetic stromal cells stimulated with KNG in the presence of ERK activation inhibitor peptide did not significantly affect the levels of phospho-HSP27. KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the presence of an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression significantly decreased KNG inhibition of etoposide-induced caspase-3 activation and apoptosis in these cells. In summary, KNG modulate bone marrow derived stromal/preosteoblast cell proliferation and suppress etoposide-induced apoptosis through ERK and HSP27 activation, respectively. These results implicate a pathophysiologic role for KNG in patients with PD.  相似文献   

4.
Receptor activator of nuclear factor-kappaB ligand (RANKL) induces osteoclastogenesis by binding with the receptor, receptor activator of nuclear factor-kappaB in the presence of macrophage colony-stimulating factor. Three human RANKL isoforms, hRANKL1, hRANKL2, and hRANKL3, were identified. hRANKL1 was identical to previously reported RANKL and possessed intracellular, transmembrane, and extracellular domains, hRANKL2 did not have the intracellular domain, and hRANKL3 did not have the intracellular and transmembrane domains. When bone marrow macrophages were cultured with NIH3T3 cells expressing hRANKL1, osteoclasts were formed, but when cultured with NIH3T3 cells expressing hRANKL2 or hRANKL3, no tartrate resistant acid phosphatase-positive cell was observed. In the coculture system, coexpression of hRANKL3 with hRANKL1 significantly inhibited the formation of osteoclasts by hRANKL1, but coexpression of hRANKL2 with hRANKL1 did not affect the osteoclastogenesis by hRANKL1 significantly. These results suggest that the activity of osteoclastogenesis by hRANKL1 is regulated by the attenuator, hRANKL3.  相似文献   

5.
6.
Fibroblast growth factor (FGF)-2 and parathyroid hormone (PTH) are potent inducers of osteoclast (OCL) formation, and PTH increases FGF-2 mRNA and protein expression in osteoblasts. To elucidate the role of endogenous FGF-2 in PTH responses, we examined PTH-induced OCL formation in bone marrow cultures from wild type and mice with a disruption of the Fgf2 gene. FGF-2-induced OCL formation was similar in marrow culture from both genotypes. In contrast, PTH-stimulated OCL formation in bone marrow cultures or co-cultures of osteoblast-spleen cells from Fgf2-/mice was significantly impaired. PTH increased RANKL mRNA expression in osteoblasts cultures from both genotypes. After 6 days of treatment, osteoprotegerin protein in cell supernatants was 40-fold higher in vehicle-treated and 30-fold higher in PTH-treated co-cultures of osteoblast and spleen cells from Fgf2-/mice compared with Fgf2+/+ mice. However, a neutralizing antibody to osteoprotegerin did not rescue reduced OCL formation in response to PTH. Injection of PTH caused hypercalcemia in Fgf2+/+ but not Fgf2-/mice. We conclude that PTH stimulates OCL formation and bone resorption in mice in part by endogenous FGF-2 synthesis by osteoblasts. Because RANKL- and interleukin-11-induced OCL formation was also reduced in bone marrow cultures from Fgf2-/mice, we further conclude that endogenous FGF-2 is necessary for maximal OCL formation by multiple bone resorbing factors.  相似文献   

7.
8.
9.
10.
FGF-2 stimulates bone formation in vitro and in vivo in rats. However, there are limited studies in mice and no data on the mechanism(s) by which FGF-2 induces bone formation. We assessed whether short-term FGF-2 treatment of marrow stromal cells from young mice would increase alkaline phosphatase-positive (ALP), mineralized colony formation and expression of genes important in osteoblast maturation. Short-term treatment with FGF-2 (0.01-1.0 nM) for the first 3 days of a 14- or 21-day culture period increased the number of ALP mineralized colonies in bone marrow stromal cells. FGF-2 (0.1 nM) increased the mRNAs for type 1 collagen: osteocalcin, runt domain/core binding factor, PTH/PTHR receptor, and insulin-like growth factor 1 (IGF-1) at 14 and 21 days. We conclude that short-term FGF-2 treatment enhances osteoblast maturation in vitro. Furthermore, the anabolic effect of FGF-2 may be attributed in part to regulation of IGF-1 in osteoblasts.  相似文献   

11.
Bone marrow stromal cells, obtained from postnatal bone marrow, contain progenitors able to differentiate into several mesenchymal lineages. Their use in gene and cell therapy requires their in vitro expansion and calls for the investigation of the culture conditions required to preserve these cells as a stem compartment with high differentiative potential during their life span. Here we report that fibroblast growth factor 2 (FGF-2)-supplemented bone marrow stromal cell primary cultures display an early increase in telomere size followed by a gradual decrease, whereas in control cultures telomere length steadily decreases with increasing population doublings. Together with clonogenic culture conditions, FGF-2 supplementation prolongs the life span of bone marrow stromal cells to more than 70 doublings and maintains their differentiation potential until 50 doublings. These results suggest that FGF-2 in vitro selects for the survival of a particular subset of cells enriched in pluripotent mesenchymal precursors and is useful in obtaining a large number of cells with preserved differentiation potential for mesenchymal tissue repair.  相似文献   

12.
The receptor activator of nuclear factor‐kappaB ligand (RANKL) and interleukin‐1beta are osteoclast activating factors which are abnormally expressed in bone marrow stromal cells and plasma cells of multiple myeloma patients. In this work we analyzed RANKL expression in human bone marrow mesenchymal stromal cells and the effect of the bisphosphonate ibandronate on RANKL expression after IL‐1beta activation of ERK pathway. Mesenchymal stromal cells were obtained from bone marrow iliac aspirates from multiple myeloma patients at stages II/III and non‐osteoporotics control donors; these cells were maintained under long‐term culture conditions. Cells were cultured in the presence or the absence of 5 ng/ml IL‐1beta and/or 5 µM ibandronate, during selected periods. mRNA for RANKL and protein levels were assayed by RT‐PCR and Western blot, respectively. Human bone marrow stromal cell line HS‐5 was used for assessing IL 1beta‐ and ibandronate‐ERK phosphorylation responses. Multiple myeloma mesenchymal stromal cells differentiate from control cells by increased basal RANKL expression. IL‐1beta up regulated RANKL expression showed dependent on activated MEK/ERK pathway. Finally, the bisphosphonate ibandronate, that hindered activation of the MEK/ERK pathway significantly inhibited both basal and IL‐1beta dependent RANKL expression by cells. Results indicate that RANKL expression involves the MEK/ERK pathway in multiple myeloma mesenchymal stromal cells, and that early obstruction of this path, such as that achieved with ibandronate, significantly deters RANKL protein expression. J. Cell. Biochem. 111: 130–137, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.  相似文献   

14.
15.
16.
17.
18.
It has been established that reactive oxygen species (ROS) such as H2O2 or superoxide anion is involved in bone loss-related diseases by stimulating osteoclast differentiation and bone resorption and that receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor expressed on stromal/osteoblastic cells. However, the roles of ROS in RANKL expression and signaling mechanisms through which ROS regulates RANKL genes are not known. Here we report that increased intracellular ROS levels by H2O2 or xanthine/xanthine oxidase-generated superoxide anion stimulated RANKL mRNA and protein expression in human osteoblast-like MG63 cell line and primary mouse bone marrow stromal cells and calvarial osteoblasts. Further analysis revealed that ROS promoted phosphorylation of cAMP response element-binding protein (CREB)/ATF2 and its binding to CRE-domain in the murine RANKL promoter region. Moreover, the results of protein kinase A (PKA) inhibitor KT5720 and CREB1 RNA interference transfection clearly showed that PKA-CREB signaling pathway was necessary for ROS stimulation of RANKL in mouse osteoblasts. In human MG63 cells, however, we found that ROS promoted heat shock factor 2 (HSF2) binding to heat shock element in human RANKL promoter region and that HSF2, but not PKA, was required for ROS up-regulation of RANKL as revealed by KT5720 and HSF2 RNA interference transfection. We also found that ROS stimulated phosphorylation of extracellular signal-regulated kinases (ERKs) and that PD98059, the inhibitor for ERKs suppressed ROS-induced RANKL expression either in mouse osteoblasts or in MG63 cells. These results demonstrate that ROS stimulates RANKL expression via ERKs and PKA-CREB pathway in mouse osteoblasts and via ERKs and HSF2 in human MG63 cells.  相似文献   

19.
Progress in FGF-2 gene therapy has been hampered by the difficulty in achieving therapeutic levels of FGF-2 secretion. This study tested whether the addition of BMP2/4 hybrid secretion signal to the FGF-2 gene and mutation of cys-70 and cys-88 to serine and asparagine, respectively, would increase the stability and secretion of active FGF-2 protein in mammalian cells using MLV-based vectors. Single or double mutations of cys-70 and cys-88 to ser-70 and asp-88, respectively, markedly increased the amounts of FGF-2 protein in conditioned media and cell lysates, which may be due to glycosylation, particularly at the mutated asp-88 residue. Addition of BMP2/4 secretion signal increased FGF-2 secretion, but also suppressed FGF-2 biosynthesis. The combination of BMP2/4 secretion signal and double cys-70 and cys-88 mutations increased the total amount of secreted FGF-2 protein >60-fold. The modifications did not alter its ability to stimulate cell proliferation and Erk1/2 phosphorylation in marrow stromal cells or its ability to bind heparin in vitro, suggesting that the modified FGF-2 protein was functionally as effective as the unmodified FGF-2. An ex vivo application of rat skin fibroblasts (RSF) transduced with the modified FGF-2 vector in a subcutaneous implant model showed that rats with implants containing cells transduced with the modified FGF-2 vector increased serum FGF-2 level >15-fold, increased growth of the implant, and increased vascularization within the implant, compared to rats that received implants containing beta-galactosidase- or wild-type FGF-2-transduced control cells. This modified vector may be useful in FGF-2 gene therapy investigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号