首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thermolysin activity as well as its stability is remarkably enhanced by high concentration of neutral salts consisting of Na(+), K(+), Cl(-) and Br(-) in the synthesis and hydrolysis of N-carbobenzoxy-L-aspertyl-L-phenylalanine methyl ester and hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) [Inouye, K. (1992) J. Biochem. 112, 335-340]. However, effect of divalent salts on thermolysin activity has not been investigated systematically. In this study, effect of Co(2+) ion on thermolysin activity in the hydrolysis of FAGLA was examined. Thermolysin activity increased 3-4 times with increasing the Co(2+) concentration to 2 mM, but the enhanced activity was considerably reduced with higher Co(2+) concentration (2-18 mM). The activation-and-inhibition dual effects of Co(2+) ion were analysed kinetically. Release of the catalytic Zn(2+) ion from thermolysin, concomitantly occurred with the Co(2+)-dependent activation, was measured with a Zn(2+)-specific fluorescent probe. This indicates that the activation is caused by substituting Co(2+) ion for the catalytic Zn(2+) ion. Meanwhile, the Co(2+)-dependent activation was inhibited competitively by Zn(2+) ion (0.1-1.0 muM) added, similarly to that it is inhibited by higher concentration of Co(2+) ion. These lines of evidence provide a strategy for regulating thermolysin activity with Co(2+) and Zn(2+) ions.  相似文献   

2.
Thermolysin activity in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide (FAGLA) and FA-l-leucyl-l-alanine amide (FALAA) was examined at various Co(2+) and Ca(2+) concentrations. It decreased to 28% with increasing [Co(2+)] up to 18 mM. The Co(2+)-dependent inactivation was in part suppressed by adding Ca(2+) ion up to 0.5 mM, but 33% of the activity remained to be inactivated even with a sufficient concentration of Ca(2+) (>0.5 mM). The Co(2+)-dependent inactivation was shown to be composed of Ca(2+)-sensitive and Ca(2+)-insensitive parts. In the latter part which is observed at [Ca(2+)] >0.5 mM, Co(2+) plays as a competitive inhibitor. On the other hand, the Co(2+)-dependent inactivation in the Ca(2+)-sensitive part observed at [Ca(2+)] <0.5 mM proceeds time-dependently following second-order kinetics, and the time-course is in good agreement with that of decrease in the thermolysin band due to autolysis in SDS-PAGE. This indicates that Co(2+) accelerates the autolysis. Here, we describe the co-regulation of thermolysin activity by Co(2+) and Ca(2+) ions and propose a molecular mechanism for the inhibition of thermolysin by Co(2+) and suppressive effect of Ca(2+) on the Co(2+)-dependent inhibition. Co(2+) ion inhibits thermolysin activity not only as a competitive inhibitor but also promoting the autolysis.  相似文献   

3.
Cyanobacteria as a biosorbent for mercuric ion   总被引:2,自引:0,他引:2  
The biosorption of Hg(2+) by two strains of cyanobacteria, Spirulina platensis and Aphanothece flocculosa, was studied under a batch stirred reaction system. Essential process parameters, including pH, biomass concentration, initial metal concentration, and presence of co-ions were shown to influence the Hg(2+) uptake. Hg(2+) uptake was optimal at pH 6.0 for both strains. The maximum loading capacities per gram of dry biomass were found to be 456 mg Hg(2+) for A. flocculosa and 428 mg Hg(2+) for S. platensis. At an initial concentration of 10 ppm Hg(2+), A. flocculosa was able to remove more than 98% of the mercury ion from solution. The biosorption kinetics of both strains showed that the metal uptake is bi-phasic, exhibiting a rapid initial uptake followed by a slower absorption process. The presence of dissolved Co(2+), Ni(2+), and Fe(3+) were found to play a synergistic role for Hg(2+) uptake by both strains. Regeneration of the biomass was examined by treating Hg(2+)-loaded samples with HCl and NH(4)Cl over four cycles of sorption and desorption.  相似文献   

4.
We examined the metal ion cofactor preference for MST3 (mammalian Ste20-like kinase 3) of the Ste20 serine/threonine kinase family. Four metal ions (Mg(+2), Mn(+2), Zn(2+), and Co(2+)) activate endogenous, exogenous, and baculovirus-expressed recombinant MST3 within the physiological concentration range. In contrast, Fe(+2) and Ca(+2) do not function as MST3 cofactors. Mn(2+), Co(2+), and Mg(2+)-dependent autophosphorylation of MST3 is mainly on threonine residue while Zn(2+)-stimulated MST3 autophosphorylation is on both serine and threonine residues. The distinct autophosphorylation pattern on MST3 suggests that MST3 may exert various types of kinase reactions depending on the type of metal ion cofactor used. To our knowledge, this is the first report showing Zn(2+) as the metal ion cofactor of a recombinant serine/threonine kinase.  相似文献   

5.
Metal ion binding to human hemopexin   总被引:1,自引:0,他引:1  
Binding of divalent metal ions to human hemopexin (Hx) purified by a new protocol has been characterized by metal ion affinity chromatography and potentiometric titration in the presence and absence of bound protoheme IX. ApoHx was retained by variously charged metal affinity chelate resins in the following order: Ni(2+) > Cu(2+) > Co(2+) > Zn(2+) > Mn(2+). The Hx-heme complex exhibited similar behavior except the order of retention of the complex on Zn(2+)- and Co(2+)-charged columns was reversed. One-dimensional (1)H NMR of apoHx in the presence of Ni(2+) implicates at least two His residues and possibly an Asp, Glu, or Met residue in Ni(2+) binding. Potentiometric titrations establish that apoHx possesses more than two metal ion binding sites and that the capacity and/or affinity for metal ion binding is diminished when heme binds. For most metal ions that have been studied, potentiometric data did not fit to binding isotherms that assume one or two independent binding sites. For Mn(2+), however, these data were consistent with a high-affinity site [K(A) = (15 +/- 3) x 10(6) M(-)(1)] and a low-affinity site (K(A) 相似文献   

6.
Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).  相似文献   

7.
The pH dependent activation of calcineurin by exogenous metal ion was studied over the pH range from 6.5 to 9.0 in increments of 0.5 pH units. Calcineurin activated by Co2+, Ni2+, or Mg2+ was characterized and compared to the pH dependency of the Mn(2+)-activated enzyme (Martin, B.L., and Graves, D.J. (1986) J. Biol. Chem. 261, 14545-14550). The pH dependency of the kinetic parameters varied with metal ion and subsequent analysis yielded estimates for the pKa values for the enzyme-metal ion and the enzyme-metal ion-substrate complexes with each of the exogenous metal ions characterized. The evaluated pK(a)s for enzyme-metal ion (EM) complexes showed an inverse relationship with the pK(a)s of the M(2+)-H2O complex. In contrast, variation of the pK(a)s for the enzyme-metal ion-substrate (EMS) complexes showed no trend. These data support the hypothesis that exogenous metal ion functions to facilitate a proton transfer before the turnover of substrate with the acidity of the exogenous metal ion as a primary determinant of its participation.  相似文献   

8.
Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent ribosome-synthesized polypeptides in eubacteria. PDF represents a novel class of mononuclear iron protein, which utilizes an Fe(2+) ion to catalyze the hydrolysis of an amide bond. This Fe(2+) enzyme is, however, extremely labile, undergoing rapid inactivation upon exposure to molecular oxygen, and is spectroscopically silent. In this work, we have replaced the native Fe(2+) ion with the spectroscopically active Co(2+) ion through overexpression in the presence of Co(2+). Co(2+)-substituted PDF (Co-PDF) has an activity 3-10-fold lower than that of the Fe(2+)-PDF but is highly stable. Steady-state kinetic assays using a series of substrates of varying deformylation rates indicate that Co-PDF has the same substrate specificity as the native enzyme. Co-PDF and Fe-PDF also share the same three-dimensional structure, pH sensitivity, and inhibition pattern by various effector molecules. These results demonstrate that Co-PDF can be used as a stable surrogate of Fe-PDF for biochemical characterization and inhibitor screening. The electronic absorption properties of the Co(2+) ion were utilized as a probe to monitor changes in the enzyme active site as a result of site-directed mutations, inhibitor binding, and changes in pH. Mutation of Glu-133 to an alanine completely abolishes the catalytic activity, whereas mutation to an aspartate results in only approximately 10-fold reduction in activity. Analysis of their absorption spectra under various pH conditions reveals pK(a) values of 6.5 and 5.6 for the metal-bound water in E133A and E133D Co-PDF, respectively, suggesting that the metal ion alone is capable of ionizing the water molecule to generate the catalytic nucleophile, a metal-bound hydroxide. On the other hand, substrate binding to the E133A mutant induces little spectral change, indicating that in the E.S complex the formyl carbonyl oxygen is not coordinated with the metal ion. These results demonstrate that the function of the active-site metal is to activate the water molecule, whereas Glu-133 acts primarily as a general acid, donating a proton to the leaving amide ion during the decomposition of the tetrahedral intermediate.  相似文献   

9.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

10.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

11.
Boyd JM  Ensign SA 《Biochemistry》2005,44(39):13151-13162
Epoxyalkane:coenzyme M transferase (EaCoMT) catalyzes the nucleophilic addition of coenzyme M (CoM, 2-mercaptoethanesulfonic acid) to epoxypropane forming 2-hydroxypropyl-CoM. The biochemical properties of EaCoMT suggest that the enzyme belongs to the family of alkyltransferase enzymes for which Zn plays a role in activating an organic thiol substrate for nucleophilic attack on an alkyl-donating substrate. The enzyme has a hexameric (alpha(6)) structure with one zinc atom per subunit. In the present work M(2+) binding and the role of Zn(2+) in EaCoMT have been established through a combination of biochemical, calorimetric, and spectroscopic techniques. A variety of metal ions, including Zn(2+), Co(2+), Cd(2+), and Ni(2+), were capable of activating a Zn-deficient "apo" form of EaCoMT, affording enzymes with various levels of activity. Titration of Co(2+) into apo-EaCoMT resulted in UV-visible spectroscopic changes consistent with the formation of a tetrahedral Co(2+) binding site, with coordination of bound Co(2+) to two thiolate ligands. Quantification of UV-visible spectral changes upon Co(2+) titration into apo-EaCoMT demonstrated that EaCoMT binds Co(2+) cooperatively at six interacting sites. Isothermal titration calorimetric studies of Co(2+) and Zn(2+) binding to EaCoMT also showed cooperativity for metal ion binding among six sites. The addition of CoM to Co(2+)-substituted EaCoMT resulted in UV-visible spectral changes indicative of formation of a new thiol-Co(2+) bond. Co(2+)-substituted EaCoMT exhibited a unique Co(2+) EPR spectrum, and this spectrum was perturbed significantly upon addition of CoM. The presence of a divalent metal ion was required for the release of protons from CoM upon binding to EaCoMT, with Zn(2+), Co(2+), and Cd(2+) each facilitating proton release. The divalent metal ion of EaCoMT is proposed to play a key role in the coordination and deprotonation of CoM, possibly through formation of a metal-thiolate that is activated for attack on the epoxide substrate.  相似文献   

12.
Lai B  Li Y  Cao A  Lai L 《Biochemistry》2003,42(3):785-791
RNase H degrades the RNA moiety in DNA:RNA hybrid in a divalent metal ion dependent manner. It is essential to understand the role of metal ion in enzymatic mechanism. One of the key points in this study is how many metal ions are involved in the enzyme catalysis. Accordingly, either one-metal binding mechanism or two-metal binding mechanism is proposed. We have studied the thermodynamic properties of four metal ions (Mg(2+), Mn(2+), Ca(2+), and Ba(2+)) binding to Methanococcus jannaschii RNase HII using isothermal titration calorimetry. All of the four metal ions were found to bind Mj RNase HII with 1:1 stoichiometry in the absence of substrate. Together with enzymatic activity assay data, we propose that only one metal ion binding to the enzyme in catalytic process. We also studied the pH dependence of metal binding and enzyme activity and found that at pH 6.5, Mg(2+) did not bind to the enzyme without the substrate but still activated the enzyme to about 2% of its maximum activity (in 10 mM Mn(2+) at pH 8). This implies that the substrate may also be incorporated in metal ion binding and help to position the metal ion. To find which acidic residues correspond to metal ion binding, we also studied the binding thermodynamics and enzymatic activity assay of four mutants: D7N, E8Q, D112N, and D149N in the presence of Mn(2+). The thermodynamic parameters are least affected for the D149N mutant, which has a very low enzymatic activity. This indicates that Asp149 is essential for the enzymatic activity. On the basis of all these observations, we suggest a metal binding model in which D7, E8, and D112 bind the metal ion and D149 activates a water molecule to attack the P-O bond in the RNA chain of the substrate.  相似文献   

13.
AA-NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA-NADase contains Cu(2+) ions that are essential for its multicatalytic activity. In this study, the interactions between divalent metal ions and AA-NADase and the effects of metal ions on its structure and activity have been investigated by equilibrium dialysis, isothermal titration calorimetry, fluorescence, circular dichroism, dynamic light scattering and HPLC. The results show that AA-NADase has two classes of Cu(2+) binding sites, one activator site with high affinity and approximately six inhibitor sites with low affinity. Cu(2+) ions function as a switch for its NADase activity. In addition, AA-NADase has one Mn(2+) binding site, one Zn(2+) binding site, one strong and two weak Co(2+) binding sites, and two strong and six weak Ni(2+) binding sites. Metal ion binding affinities follow the trend Cu(2+) > Ni(2+) > Mn(2+) > Co(2+) > Zn(2+), which accounts for the existence of one Cu(2+) in the purified AA-NADase. Both NADase and ADPase activities of AA-NADase do not have an absolute requirement for Cu(2+), and all tested metal ions activate its NADase and ADPase activities and the activation capacity follows the trend Zn(2+) > Mn(2+) > Cu(2+) ~Co(2+) > Ni(2+). Metal ions serve as regulators for its multicatalytic activity. Although all tested metal ions have no obvious effects on the global structure of AA-NADase, Cu(2+)- and Zn(2+)-induced conformational changes around some Trp residues have been observed. Interestingly, each tested metal ion has a very similar activation of both NADase and ADPase activities, suggesting that the two different activities probably occur at the same site.  相似文献   

14.
Butcher SE  Allain FH  Feigon J 《Biochemistry》2000,39(9):2174-2182
Cations play an important role in RNA folding and stabilization. The hairpin ribozyme is a small catalytic RNA consisting of two domains, A and B, which interact in the transition state in an ion-dependent fashion. Here we describe the interaction of mono-, di-, and trivalent cations with the domains of the ribozyme, as studied by homo- and heteronuclear NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping, and intermolecular NOEs indicate that the B domain contains four to five metal binding sites, which bind Mn(2+), Mg(2+), and Co(NH(3))(6)(3+). There is no significant structural change in the B domain upon the addition of Co(NH(3))(6)(3+) or Mg(2+). No specific monovalent ion binding sites exist on the B domain, as determined by (15)NH(4)(+) binding studies. In contrast to the B domain, there are no observable metal ion interactions within the internal loop of the A domain. Model structure calculations of Mn(2+) interactions at two sites within the B domain indicate that the binding sites comprise major groove pockets lined with functional groups oriented so that multiple hydrogen bonds can be formed between the RNA and Mn(H(2)O)(6)(2+) or Co(NH(3))(6)(3+). Site 1 is very similar in geometry to a site within the P4-P6 domain of the Tetrahymena group I intron, while site 2 is unique among known ion binding sites. The site 2 ion interacts with a catalytically essential nucleotide and bridges two phosphates. Due to its location and geometry, this ion may play an important role in the docking of the A and B domains.  相似文献   

15.
Cox DH 《BMB reports》2011,44(10):635-646
Due to its high external and low internal concentration the Ca(2+) ion is used ubiquitously as an intracellular signaling molecule, and a great many Ca(2+)-sensing proteins have evolved to receive and propagate Ca(2+) signals. Among them are ion channel proteins, whose Ca(2+) sensitivity allows internal Ca(2+) to influence the electrical activity of cell membranes and to feedback-inhibit further Ca(2+) entry into the cytoplasm. In this review I will describe what is understood about the Ca(2+) sensing mechanisms of the three best studied classes of Ca(2+)-sensitive ion channels: Large-conductance Ca(2+)-activated K(+) channels, small-conductance Ca(2+)-activated K(+) channels, and voltage- gated Ca(2+) channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.  相似文献   

16.
Metal ion substrate inhibition of ferrochelatase   总被引:1,自引:0,他引:1  
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. Robust kinetic analyses of the reaction mechanism are complicated by the instability of ferrous iron in aqueous solution, particularly at alkaline pH values. At pH 7.00 the half-life for spontaneous oxidation of ferrous ion is approximately 2 min in the absence of metal complexing additives, which is sufficient for direct comparisons of alternative metal ion substrates with iron. These analyses reveal that purified recombinant ferrochelatase from both murine and yeast sources inserts not only ferrous iron but also divalent cobalt, zinc, nickel, and copper into protoporphyrin IX to form the corresponding metalloporphyrins but with considerable mechanistic variability. Ferrous iron is the preferred metal ion substrate in terms of apparent k(cat) and is also the only metal ion substrate not subject to severe substrate inhibition. Substrate inhibition occurs in the order Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) and can be alleviated by the addition of metal complexing agents such as beta-mercaptoethanol or imidazole to the reaction buffer. These data indicate the presence of two catalytically significant metal ion binding sites that may coordinately regulate a selective processivity for the various potential metal ion substrates.  相似文献   

17.
M C Storm  M F Dunn 《Biochemistry》1985,24(7):1749-1756
Substitution of Cd2+ for Zn2+ yields a hexameric insulin species containing 3 mol of metal ion per hexamer. The Cd2+ binding loci consist of the two His(B10) sites and a new site involving the Glu(B13) residues located at the center of the hexamer [Sudmeier, J. L., Bell, S. J., Storm, M. C., & Dunn, M. F. (1981) Science (Washington, D.C.) 212, 560-562]. Substitution of Co2+ or Co3+ for Zn2+ gives hexamers containing 2 mol of metal per hexamer. Insulin solutions to which both Cd2+ and Co2+ have been added in a ratio of 6:2:1 [In]:[Co2+]:[Cd2+] followed by oxidation to the exchange-inert Co3+ state yield stable hybrid species containing both Co3+ and Cd2+ with a composition of (In)6(Co3+)2Cd2+. The kinetics of the reaction of 2,2',2"-terpyridine (terpy) with the exchange-labile (In)6(Cd2+)2 and (In)6(Co2+)2 derivatives are biphasic and involve the rapid formation of an intermediate with coordination of one terpy molecule to each protein-bound metal ion; then, in a rate-limiting step the terpy-coordinated metal ion dissociates from the protein, and a second molecule of terpy binds to the metal ion to form a bis complex. Reaction of the exchange-inert Co3+ ions of (In)6(Co3+)2 with terpy is a slow apparent first-order process (t1/2 = 13.1 h). In contrast to the kinetic behavior of (In)6(Co2+)2 and (In)6(Cd2+)2, the Cd2+ ions bound to the hybrid (In)6(Co3+)2Cd2+ react quite slowly with terpy (t1/2 = 1 h at pH 8.0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Microbial fuel cell (MFC) based sensing was explored to provide for the development of an in situ bioremediation monitoring approach for substrate concentrations and microbial respiration rates. MFC systems were examined in column systems where Shewanella oneidensis MR1 used an external electron acceptor (an electrode) to metabolize lactate (a bioremediation additive) to acetate. Column systems were operated with varying influent lactate concentrations (0-41 mM) and monitored for current generation (0.01-0.39 mA). Biological current generation paralleled bulk phase lactate concentration both in the influent and in the bulk phase at the anode; current values were correlated to lactate concentration at the anode (R(2) = 0.9), The electrical signal provided real-time information for electron donor availability and biological activity. These results have practical implications for efficient and inexpensive real-time monitoring of in situ bioremediation processes where information on substrate concentrations is often difficult to obtain and where information on the rate and nature of metabolic processes is needed.  相似文献   

19.
20.
We have developed a novel method for simultaneously measuring fluorescence and chemiluminescence. The generation of superoxide anion and the intracellular Ca(2+) ion concentration of neutrophil-like cells stimulated by agonists were measured in real time by our method. Our results were in agreement with the intracellular signalling in the neutrophils. We also found that the presence of Zn(2+) ion inhibited both the generation of superoxide anion and the influx of Ca(2+) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号