首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of glucose transport into cells is of fundamental importance in whole body homeostasis and adaptation to metabolic stresses, and this review examines the signalling mechanisms controlling this process. The events that mediate the action of insulin on glucose transport, which is by far the best characterized paradigm for glucose transport regulation, are discussed. There are several excellent reviews on various aspects of this subject, which are referred to while highlighting very recent developments in the field, including the recently described CAP pathway, and emerging mechanisms for feedback regulation of insulin signalling. The manner in which hormonal signalling is modulated by stimuli such as oxidative and osmotic stress is then discussed. The second major physiological event where glucose transport regulation is critical is the contraction of skeletal muscle, due to the large metabolic demands of this activity. The mechanism of this regulation is distinct from that initiated by insulin, and recent developments will be examined that have begun to clarify how contraction stimulates glucose transport in skeletal muscle, including the roles performed by AMP-activated protein kinase and nitric oxide synthase.  相似文献   

2.
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.  相似文献   

3.
Glucose transport is an essential physiological process that is characteristic of all eukaryotic cells, including skeletal muscle. In skeletal muscle, glucose transport is mediated by the GLUT-4 protein under conditions of increased carbohydrate utilization. The three major physiological stimuli of glucose transport in muscle are insulin, exercise/contraction, and hypoxia. Here, the role of reactive oxygen species (ROS) in modulating glucose transport in skeletal muscle is reviewed. Convincing evidence for ROS involvement in insulin- and hypoxia-mediated transport in muscle is lacking. Recent experiments, based on pharmacological and genetic approaches, support a role for ROS in contraction-mediated glucose transport. During contraction, endogenously produced ROS appear to mediate their effects on glucose transport via AMP-activated protein kinase.  相似文献   

4.
AMP-activated protein kinase and the regulation of glucose transport   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transport. Although similar to the effects of insulin to increase glucose transport in muscle, it is clear that the underlying mechanisms for AMPK-mediated glucose transport involve proximal signals that are distinct from that of insulin. Here, we discuss the evidence for AMPK regulation of glucose transport in skeletal and cardiac muscle and describe research investigating putative signaling mechanisms mediating this effect. We also discuss evidence that AMPK may play a role in enhancing muscle and whole body insulin sensitivity for glucose transport under conditions such as exercise, as well as the use of the AMPK activator AICAR to reverse insulin-resistant conditions. The identification of AMPK as a novel glucose transport mediator in skeletal muscle is providing important insights for the treatment and prevention of type 2 diabetes.  相似文献   

5.
An increase in circulating levels of specific NEFAs (non-esterified fatty acids) has been implicated in the pathogenesis of insulin resistance and impaired glucose disposal in skeletal muscle. In particular, elevation of SFAs (saturated fatty acids), such as palmitate, has been correlated with reduced insulin sensitivity, whereas an increase in certain MUFAs and PUFAs (mono- and poly-unsaturated fatty acids respectively) has been suggested to improve glycaemic control, although the underlying mechanisms remain unclear. In the present study, we compare the effects of palmitoleate (a MUFA) and palmitate (a SFA) on insulin action and glucose utilization in rat L6 skeletal muscle cells. Basal glucose uptake was enhanced approx. 2-fold following treatment of cells with palmitoleate. The MUFA-induced increase in glucose transport led to an associated rise in glucose oxidation and glycogen synthesis, which could not be attributed to activation of signalling proteins normally modulated by stimuli such as insulin, nutrients or cell stress. Moreover, although the MUFA-induced increase in glucose uptake was slow in onset, it was not dependent upon protein synthesis, but did, nevertheless, involve an increase in the plasma membrane abundance of GLUT1 and GLUT4. In contrast, palmitate caused a substantial reduction in insulin signalling and insulin-stimulated glucose transport, but was unable to antagonize the increase in transport elicited by palmitoleate. Our findings indicate that SFAs and MUFAs exert distinct effects upon insulin signalling and glucose uptake in L6 muscle cells and suggest that a diet enriched with MUFAs may facilitate uptake and utilization of glucose in normal and insulin-resistant skeletal muscle.  相似文献   

6.
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.  相似文献   

7.
Kelley DE  Price JC  Cobelli C 《IUBMB life》2001,52(6):279-284
Insulin has a marked effect to stimulate the transport and metabolism of glucose in skeletal muscle in healthy individuals, whereas an impaired response, termed insulin resistance, is a major risk factor for diabetes mellitus and other metabolic diseases. Studies of the molecular physiology of insulin action in skeletal muscle indicate that a principal loci of control resides within the proximal steps of glucose transport and phosphorylation. Deoxyglucose, the metabolism of which is limited to these proximal steps, is widely used for in vitro studies of insulin action on glucose transport. The technologies of PET imaging provide a unique opportunity to carry out similar studies in vivo in human skeletal muscle. In this instance, a short-lived positron labeled tracer, [18F] FDG, can be given at sufficiently high specific activity to image not only glucose uptake, but by dynamic PET imaging, by monitoring the time course of [18F] FDG tissue activity, data can be generated to examine the kinetics of glucose transport and phosphorylation. The experimental procedures of this approach, including an overview of the mathematical modeling, are described in this review, along with some of the key findings of the initial applications of PET for the study of glucose metabolism in human skeletal muscle.  相似文献   

8.
Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.  相似文献   

9.
Neuregulin, a growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and exercise, neuregulins stimulate glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscle. Like muscle contraction, neuregulins have additive effects with insulin on glucose uptake. Therefore, we examined whether neuregulins are involved in the mechanism by which muscle contraction regulates glucose transport. We show that caffeine-induced increases in cytosolic Ca2+ mediate a metalloproteinase-dependent release of neuregulins, which stimulates tyrosine phosphorylation of ErbB4 receptors. Activation of ErbB4 is necessary for Ca2+-derived effects on glucose transport. Furthermore, blockage of ErbB4 abruptly impairs contraction-induced glucose uptake in slow twitch muscle fibers, and to a lesser extent, in fast twitch muscle fibers. In conclusion, we provide evidence that contraction-induced activation of neuregulin receptors is necessary for the stimulation of glucose transport and a key element of energetic metabolism during muscle contraction.  相似文献   

10.
It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin (Standaert, M. L., Farese, R. V., Cooper, R. D., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle. Exposure to PLC-Cp activated glycogen phosphorylase and potentiated twitch tension in response to electrical stimulation, providing evidence that PLC-Cp increases cytoplasmic Ca2+ concentration. Dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, completely blocked both the activation of phosphorylase and the stimulation of glucose transport by PLC-Cp. These findings provide evidence that an increase in cytoplasmic Ca2+ concentration is involved in the activation of glucose transport in skeletal muscle by PLC-Cp.  相似文献   

11.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

12.
Skeletal muscle is a primary organ that uses blood glucose. Insulin- and 5′AMP-activated protein kinase (AMPK)-regulated intracellular signaling pathways are known as major mechanisms that regulate muscle glucose transport. It has been reported that macrophage migration inhibitory factor (MIF) is secreted from adipose tissue and heart, and affects these two pathways. In this study, we examined whether MIF is a myokine that is secreted from skeletal muscles and affects muscle glucose transport induced by these two pathways. We found that MIF is expressed in several different types of skeletal muscle. Its secretion was also confirmed in C2C12 myotubes, a skeletal muscle cell line. Next, the extensor digitorum longus (EDL) and soleus muscles were isolated from mice and treated with recombinant MIF in an in vitro muscle incubation system. MIF itself did not have any effect on glucose transport in both types of muscles. However, glucose transport induced by a submaximal dose of insulin was diminished by co-incubation with MIF in the soleus muscle. MIF also diminished glucose transport induced by a maximal dose of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), an AMPK activator, in the EDL muscle. These results suggest that MIF is a negative regulator of insulin- and AICAR-induced glucose transport in skeletal muscle. Since MIF secretion from C2C12 myotubes to the culture medium decreased during contraction evoked by electrical stimulations, MIF may be involved in the mechanisms underlying exercise-induced sensitization of glucose transport in skeletal muscle.  相似文献   

13.
The prevalence of type 2 diabetes mellitus is growing worldwide. By the year 2020, 250 million people will be afflicted. Most forms of type 2 diabetes are polygenic with complex inheritance patterns, and penetrance is strongly influenced by environmental factors. The specific genes involved are not yet known, but impaired glucose uptake in skeletal muscle is an early, genetically determined defect that is present in non-diabetic relatives of diabetic subjects. The rate-limiting step in muscle glucose use is the transmembrane transport of glucose mediated by glucose transporter (GLUT) 4 (ref. 4), which is expressed mainly in skeletal muscle, heart and adipose tissue. GLUT4 mediates glucose transport stimulated by insulin and contraction/exercise. The importance of GLUT4 and glucose uptake in muscle, however, was challenged by two recent observations. Whereas heterozygous GLUT4 knockout mice show moderate glucose intolerance, homozygous whole-body GLUT4 knockout (GLUT4-null) mice have only mild perturbations in glucose homeostasis and have growth retardation, depletion of fat stores, cardiac hypertrophy and failure, and a shortened life span. Moreover, muscle-specific inactivation of the insulin receptor results in minimal, if any, change in glucose tolerance. To determine the importance of glucose uptake into muscle for glucose homeostasis, we disrupted GLUT4 selectively in mouse muscles. A profound reduction in basal glucose transport and near-absence of stimulation by insulin or contraction resulted. These mice showed severe insulin resistance and glucose intolerance from an early age. Thus, GLUT4-mediated glucose transport in muscle is essential to the maintenance of normal glucose homeostasis.  相似文献   

14.
Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale “omics” studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.  相似文献   

15.
16.
Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and are particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE inhibitors are associated with enhanced levels of the vasodilator bradykinin and decreased production of the vasoconstrictor and growth factor angiotensin II (ATII). In insulin-resistant conditions, ACE inhibitors can also enhance whole-body glucose disposal and glucose transport activity in skeletal muscle. This review will focus on the metabolic consequences of ACE inhibition in insulin resistance. At the cellular level, ACE inhibitors acutely enhance glucose uptake in insulin-resistant skeletal muscle via two mechanisms. One mechanism involves the action of bradykinin, acting through bradykinin B(2) receptors, to increase nitric oxide (NO) production and ultimately enhance glucose transport. A second mechanism involves diminution of the inhibitory effects of ATII, acting through AT(1) receptors, on the skeletal muscle glucose transport system. The acute actions of ACE inhibitors on skeletal muscle glucose transport are associated with upregulation of insulin signaling, including enhanced IRS-1 tyrosine phosphorylation and phosphatidylinositol-3-kinase activity, and ultimately with increased cell-surface GLUT-4 glucose transporter protein. Chronic administration of ACE inhibitors or AT(1) antagonists to insulin-resistant rodents can increase protein expression of GLUT-4 in skeletal muscle and myocardium. These data support the concept that ACE inhibitors can beneficially modulate glucose control in insulin-resistant states, possibly through a NO-dependent effect of bradykinin and/or antagonism of ATII action on skeletal muscle.  相似文献   

17.
Insulin resistance is a major pathophysiologic abnormality that characterizes metabolic syndrome and type 2 diabetes. A well characterized ethanolic extract of Artemisia dracunculus L., termed PMI 5011, has been shown to improve insulin action in vitro and in vivo, but the cellular mechanisms remain elusive. Using differential proteomics, we have studied mechanisms by which PMI 5011 enhances insulin action in primary human skeletal muscle culture obtained by biopsy from obese, insulin-resistant individuals. Using iTRAQ™ labeling and LC–MS/MS, we have identified over 200 differentially regulated proteins due to treatment with PMI 5011 and insulin stimulation. Bioinformatics analyses determined that several metabolic pathways related to glycolysis, glucose transport and cell signaling were highly represented and differentially regulated in the presence of PMI 5011 indicating that this extract affects several pathways modulating carbohydrate metabolism, including translocation of GLUT4 to the plasma membrane. These findings provide a molecular mechanism by which a botanical extract improves insulin stimulated glucose uptake, transport and metabolism at the cellular level resulting in enhanced whole body insulin sensitivity.  相似文献   

18.
Insulin action in skeletal muscle from patients with NIDDM   总被引:12,自引:0,他引:12  
Insulin resistance in peripheral tissues is a common feature of non insulin-dependent diabetes mellitus (NIDDM). The decrease in insulin-mediated peripheral glucose uptake in NIDDM patients can be localized to defects in insulin action on glucose transport in skeletal muscle. Following short term in vitro exposure to both submaximal and maximal concentrations of insulin, 3-O-methylglucose transport rates are 40-50% lower in isolated skeletal muscle strips from NIDDM patients when compared to muscle strips from nondiabetic subjects. In addition, we have shown that physiological levels of insulin induce a 1.6-2.0 fold increase in GLUT4 content in skeletal muscle plasma membranes from control subjects, whereas no significant increase was noted in NIDDM skeletal muscle. Impaired insulin-stimulated GLUT4 translocation and glucose transport in NIDDM skeletal muscle is associated with reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI3-kinase activity. The reduced IRS-1 phosphorylation cannot be attributed to decreased protein expression, since the IRS-1 protein content is similar between NIDDM subjects and controls. Altered glycemia may contribute to decreased insulin-mediated glucose transport in skeletal muscle from NIDDM patients. We have shown that insulin-stimulated glucose transport is normalized in vitro in the presence of euglycemia, but not in the presence of hyperglycemia. Thus, the circulating level of glucose may independently regulate insulin stimulated glucose transport in skeletal muscle from NIDDM patients via a down regulation of the insulin signaling cascade.  相似文献   

19.
Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. The body has a remarkable capacity to satisfy the nutritional need for glucose, while still maintaining blood glucose homeostasis. The essential role of glucagon and insulin and the importance of distributed control of glucose fluxes are highlighted in this review. With regard to the latter, studies are presented that show how regulation of muscle glucose uptake is regulated by glucose delivery to muscle, glucose transport into muscle, and glucose phosphorylation within muscle.  相似文献   

20.
Glucose uptake by mammalian skeletal muscle has been extensively covered in the literature, whereas the uptake of glucose by avian skeletal muscle has yet to be examined. As skeletal muscle provides the majority of postprandial glucose uptake in mammals, this study was designed to characterize the glucose transport mechanisms and glycogen content of avian skeletal muscle. In addition, plasma glucose levels were measured. English sparrow extensor digitorum communis (EDC) skeletal muscles were used for this study to quantify in vitro radiolabeled-glucose uptake. Uptake of labeled glucose was shown to decrease in the presence of increasing unlabeled glucose and was maximal by 60 minutes of incubation. Various agents known to increase glucose transport in mammalian tissues, via the insulin and contraction-responsive pathways, were used to manipulate and characterize in vitro transport in birds. The typical effectors of the mammalian insulin pathway, insulin (2 ng/ml) and insulin-like growth factor-1 (48 ng/ml), did not increase skeletal muscle glucose transport. Likewise, inducers of the mammalian contraction-responsive pathway had no effect on glucose transport by in vitro avian skeletal muscle (5 mM caffeine, 2 mM AICAR (5'-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). Interestingly, 200 microM phloretin, an agent used to block glucose transport proteins, significantly inhibited its uptake (P<0.001). These results suggest that a glucose transporter is responsible for glucose uptake by avian skeletal muscle, albeit at unexpectedly low levels, considering the high plasma glucose concentrations (265.9+/-53.5 mg/dl) and low skeletal muscle glycogen content (9.1+/-4.11 nM glucose/mg) of English sparrows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号