首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here morphological and functional analyses of the spermatogenic process in sexually mature white-lipped peccaries. Ten sexually mature male animals, weighing approximately 39 kg were studied. Characteristics investigated included the gonadosomatic index (GSI), relative frequency of stages of the cycle of seminiferous epithelium (CSE), cell populations present in the seminiferous epithelium in stage 1 of CSE, intrinsic rate of spermatogenesis, Sertoli cell index, height of seminiferous epithelium and diameter of seminiferous tubules, volumetric proportion of components of the testicular parenchyma and length of seminiferous tubules per testis and per gram of testis. The GSI was 0.19%, relative frequencies of pre-meiotic, meiotic and post-meiotic phases were, respectively 43.6%, 13.8% and 42.6%, general rate of spermatogenesis was 25.8, each Sertoli cell supported an average 18.4 germinative cells, height of seminiferous epithelium and diameter of seminiferous tubules were, respectively, 78.4 microm and 225.6 microm, testicular parenchyma was composed by 75.8% seminiferous tubules and 24.2% intertubular tissue, and length of seminiferous tubules per gram of testis was 15.8m. These results show that, except for overall rate of spermatogenesis, the spermatogenic process in white-lipped peccaries is very similar to that of collared peccaries, and that Sertoli cells have a greater capacity to support germinative cells than most domestic mammals.  相似文献   

2.
In this study, we examined the age-related changes on morphometric parameters and ultrastructure of seminiferous tubules, and on the expression of extracellular matrix proteins in lamina propria of Syrian hamsters. A significant decrease in the percentage of normal tubules and an increase in the percentage of hypospermatogenic and arrested maturation tubules was observed with aging. Aged animals showed a decrease in tubular diameter, tubular lumen, seminiferous epithelium volume and total tubular volume. However, the total length of seminiferous tubules was significantly increased with aging. The most important ultrastructural changes with aging were the thickening of the lamina propria, the presence of diverse abnormalities in the spermiogenesis process, degeneration of germ cells, and vacuolization and flattening of Sertoli cells showing abundant lipofucsin droplets and residual bodies. Laminin immunoreactivity was found along the lamina propria of seminiferous tubules both in young and aged animals. Fibronectin immunoreactivity was found along the lamina propria and blood vessels. Both laminin and fibronectin total volume of immunostaining per testis was increased in aged hamsters. In conclusion, the age-related changes in seminiferous tubules of hamster include: a decrease in tubular width and an increase in tubular length; widening of the lamina propria caused by a more extensive connective matrix between the peritubular cells and the basal membrane; and a strong disarrangement of the seminiferous epithelium, including germ cell degeneration and important alterations in both spermiogenesis and Sertoli cell structure.  相似文献   

3.
It was established that the local X-irradiation (1000 R) of testes of the adult rats results a total destruction of seminiferous tubules. The restitution of the organ structure proceeds via formation of new seminiferous tubules in which spermatogenic epithelium later develops. Rete testis and germ cells preserved in its epithelium from embryogenesis are a source of regeneration material. The results obtained favour the suggestion about the dynamic structure of mammalian testis.  相似文献   

4.
5.
The aim of the present study was to evaluate the effects of unilateral testicular torsion on the contralateral testis with respect to the stages of the cycle of the seminiferous epithelium (CSE). Fifty-five male Wistar rats, 60 days old, were used. The animals were divided into 11 groups. Groups 1-5 were subjected to unilateral testicular torsion from 3 to 48 h, followed by detorsion. Groups 6-10 had unilateral orchiectomies after unilateral testicular torsion for 3 to 48 h. Animals constituting group 11 served as the control sham-operated group. All animals were killed after 2 months. The percentage of affected tubules (tubules showing pathological changes) in the contralateral testis was estimated based on the CSE stages. In the torsion/detorsion group, the percentage of affected tubules was significantly greater (58.6%) than in torsion/orchiectomy group (48.0%). Stages VI-XI of the spermatogenic cycle were the most affected when compared with the rest of the stages in each experimental group (P <0.05). These results show that stages VI-XI of the spermatogenic cycle, the stages associated with low antioxidant capacities, are the most sensitive to the effects of testicular torsion on the contralateral testis.  相似文献   

6.
Gelsolin, an actin-binding and severing protein present in many mammalian cells, was characterized in human testis. Although abundant in testicular extracts, gelsolin was not detected in purified spermatogenic cells by immunoblot analysis. Immunofluorescence studies of testis sections showed that gelsolin has two main localizations: peritubular cells and the seminiferous epithelium. In peritubular cells, gelsolin was present together with α-SM actin, in agreement with the myoid cell characteristics of these cells. In a large proportion of the tubules, gelsolin was found mainly, together with actin, in the apical part of the seminiferous epithelium. This localization of gelsolin also was observed in seminiferous tubules with a partial or complete absence of germinal cells, which evokes a presence of gelsolin at the apex of Sertoli cells. However, in normal testis, a complex pattern of gelsolin labeling was also present, mostly in the apical third of the epithelium, around cells or groups of cells, mainly spermatids, and, less frequently, in various other localizations from the apical to the basal part of the seminiferous epithelium. Taken together, these observations suggest that gelsolin may play different functions in the seminiferous epithelium: (1) regulation of the dynamic alterations of the actin cytoskeleton in the apical cytoplasm of Sertoli cells, and (2) modification of actin filaments assemblies in specific structures at germ cell-Sertoli cell contacts. Thereby, the actin-modulating properties of gelsolin are probably involved in reorganization of the seminiferous epithelium related to germ cell differentiation. Mol. Reprod. Dev. 48:63–70, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The jaguar, like most wild felids, is an endangered species. Since there are few data regarding reproductive biology for this species, our main goal was to investigate basic aspects of the testis and spermatogenesis. Four adult male jaguars were utilized; to determine the duration of spermatogenesis, two animals received an intratesticular injection of H(3)-thymidine. Mean (+/-SEM) testis weight and the gonadosomatic index were 17.7+/-2.2g and 0.05+/-0.01%, respectively, whereas the seminiferous tubules and the Leydig cells volume density were 74.7+/-3.8 and 16.7+/-1.6%. Eight stages of spermatogenesis were characterized, according to the tubular morphology system and acrosome development. Each spermatogenic cycle and the entire spermatogenic process (based on 4.5 cycles) lasted approximately 12.8+/-0.01 and 57.7+/-0.07 d. The number of Sertoli and Leydig cells per gram of testis was 29+/-4x10(6) and 107+/-12x10(6). Based on the number of round spermatids per pachytene spermatocyte (2.8+/-0.3:1; meiotic index); significant cell loss (30%) occurred during the two meiotic divisions. There were approximately eight spermatids for each Sertoli cell (Sertoli cell efficiency), whereas the daily sperm production per gram of testis was 16.9+/-1.2x10(6). We expect that in the near future, the knowledge obtained in the present investigation will facilitate, utilizing germ cell transplantation, preservation of the germinal epithelium and the ability to generate sperm from jaguars in testes of domestic cats.  相似文献   

8.
Xenografting of testis explants into recipient mice has resulted in successful restoration of spermatogenesis in several species. Most studies have utilized neonatal donor tissue, although a few have used prepubertal testes. In Holstein bulls, prepubertal development of the testis occurs between 16 and 32 weeks of age. The purpose of the present study was to determine the optimal age during prepubertal development of Holstein bulls for testis grafting. Explants of testis tissue from Holstein bulls between 12 and 32 weeks of age (2 bulls/age; 6 ages) were subcutaneously grafted into castrated or intact immunocompromised mice (n=8/age), then recovered after 75 and 173 days (n=4 mice/grafting period) and evaluated histologically for spermatogenic progression. Seminiferous tubules were assigned a score based on the most advanced type of germ cell present within the tubule and the average for all tubules scored (n=25) within an explant was calculated. Scores for all explants per mouse (n=6) were averaged to give a single spermatogenic progression score per mouse. No difference in spermatogenic progression of grafts between intact and castrated recipients was observed. Spermatocytes were observed in testis grafts from bulls of all ages 75 days post-grafting. At 173 days, the spermatogenic progression score for explants derived from 20 weeks bulls was greater than all ages except 12 weeks donors (p<0.05), with 8% of tubules containing spermatids. Donor material from bulls older than 20 weeks had lesser spermatogenic progression scores largely attributed to the greater number of atrophic tubules in grafts from older donors. Grafts from 28 and 32 weeks donors showed signs of degeneration by 75 days post-grafting, with 30 and 55% atrophic tubules, respectively, and lesser spermatogenic efficiency scores. By 173 days post-grafting, 72% of tubules in explants from 32 weeks donors were atrophic. The results of the present study suggest that the early stages of prepubertal development are optimal for testis grafting while advanced spermatogenesis in the donor tissue prior to grafting had a negative effect on graft development. Spermatogenesis within the grafts apparently needs to be re-established by spermatogonial stem cells or early spermatogonia.  相似文献   

9.
The ontogenesis and structural characteristics of the seminal vesicles in Clarias gariepinus (sharptooth catfish) were studied by light and electron microscopy and are described in detail. The seminal vesicles, beginning as simple protrusions from the vas efferentia, becomes more complex with age. Their distal ends become fingerlike and the bases form palm-like extensions. Juvenile male organs do not reveal any signs of seminal vesicles although spermatogenic tissue is already well delineated. The developing gonads contain clusters of large cells, close to the sperm duct and cysts of the testis, from which seminal vesicles are formed. Secretory epithelium lines the tubules of the seminal vesicles and becomes columnar as the tissue matures. Electron micro-graphs of these epithelial cells reveal two types of cells: opaque cells and cells with very vacuolized cytoplasm. Dense pinocytotic vesicles are present between the membranes of neighbouring seminal tubules and apical cell membranes facing the lumen. Maturation and onset of secretion by the secretory cells is accompanied by morphological changes. Protruding cylindrical cells become shortened, modified to cuboidal, rounded cells that send tubular extensions into the lumen. In the final stage of differentiation, only connective tissue membranes supporting the tubule walls remain intact. At the points of contact between the testis, seminal vesicles, and sperm duct, the epithelia of these organs often become confluent. The distal parts of the seminal vesicles, rarely contain sperm; during spawning sperm accumulated in the proximal tubules of the vesicles. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

11.
Studies of synchronization of spermatogenesis following vitamin A deficiency have suggested that this may provide an in vivo model for the study of stage-dependent changes in hormonal action and protein secretion within the seminiferous epithelium. However, until now, no information on the stability or durability of this condition has been available. In this study, 200 seminiferous tubules from each of 40 rats (including controls) were classified according to their spermatogenic stage after withdrawal and replenishment of vitamin A. Following 15 wk withdrawal and subsequent replenishment of vitamin A, spermatogenesis was initiated in a synchronous fashion. This synchrony remained stable for more than 10 cycles of the seminiferous epithelium (2.5 spermatogenic cycles). In association with the extended period of vitamin A deficiency, a proportion of tubules (30%) showed morphological characteristics of either Sertoli cells only or Sertoli cells plus spermatogonia with occasional pachytene spermatocytes. During the 11-wk period of observation in this study, no significant change in proportions of damaged tubules were observed. Testicular testosterone concentrations, although elevated with respect to controls, showed no correlation with the stage of the cycle of the seminiferous epithelium observed, whereas pituitary and serum follicle-stimulating hormone levels were elevated, probably due to the number of damaged tubules observed. The persistence of synchrony in spermatogenesis following vitamin A treatment suggests that this model is applicable for studies of paracrine actions within the testis. However, the decreased ratio of synchrony observed with time may provide evidence that duration of the individual stages of the cycle of the seminiferous epithelium might be subject to temporal variation, leading to a progressive desynchronization of spermatogenesis in this model system.  相似文献   

12.
We have reported [1,2] in immature golden hamster testis that 5 beta-reductase is localized in the seminiferous tubules, while 5a-reductase is present in the interstitial tissue and that the 17 beta-ol-dehydrogenase activity is found predominantly in the seminiferous tubules. In the present study, we show the intratubular localization of these enzymes. The left testis of golden hamster was irradiated with 2000R or 8000R of X-rays at 22 days of age. The hamsters were killed at 28 days of age. Homogenates of the left irradiated and right intact testes were incubated with [14C]-4-androstone-3,17-dione and NADPH, and enzyme activity was estimated. Both testes were also examined histologically. The X-irradiation of the testis resulted in an almost complete disappearance of germ cells with a significant decrease in testis weight, but the interstitial tissue and tubular nongerm cells including Sertoli cells remained almost unchanged. However, the activities of 5 beta-reductase and 17 beta-ol-dehydrogenase expressed as nmol formed/testis/h did not decrease at all. These results show that 5 beta-reductase is localized in the tubular nongerm cells including the Sertoli cells and 17 beta-ol-dehydrogenase is present in the tubular nongerm cells and interstitial tissue in immature golden hamster testis.  相似文献   

13.
Summary Seminiferous tubules from human testes were mechanically isolated, the cut edges were sealed, and the tubules were cultured in medium free of fetal calf serum (FCS). Degeneration of germ cells occurred during the culture period and was paralleled by a disruption of the seminiferous epithelium, a disturbance in morphology and function of Sertoli cells, and a thickening of the lamina propria. However, when tubules were cultured for 5 days in the presence of FCS, degeneration of the spermatogenic tissue was reduced. FCS increased the mitotic activity of germ cells, but did not maintain normal morphology and function of Sertoli cells and cellular elements of the lamina propria. The thickening of the tubular wall concurred with a change in phenotype of lamina-propria cells from myoid to fibroblastic. Addition of nerve growth factor (NGF) to the culture medium (i) maintained the myoid phenotype of lamina-propria cells, (ii) prevented thickening of the tubular wall, and (iii) stabilized Sertoli cell morphology and function. The effects of NGF appeared to depend on the trophic effects of FCS, since NGF alone had no influence on the maintenance of a regular morphology of the spermatogenic epithelium. The present results indicate a decisive role for NGF in stabilizing specific functions of seminiferous tubules.  相似文献   

14.
Summary The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

15.
The distribution of type IV collagen and laminin was studied by immunocytochemistry during rat gonadal morphogenesis and postnatal development of the testis and epididymis. Immunostaining appeared as early as the 12th day of gestation along the basement membranes of the mesonephric-gonadal complex. The connection between some mesonephric tubules and coelomic epithelium was seen between the 12th and 13th day of gestation. Discontinuous immunostained basement membranes delineated the differentiating sexual cords in 13-day-old fetuses; this process probably began in the inner part of the gonadal ridge. The seminiferous cords surrounded by a continuous immunoreactive basement membrane are separated from the coelomic epithelium by the differentiating tunica albuginea in 14-day-old fetuses. During the postnatal maturation of epididymis and testis, the differentiation of peritubular cells is accompanied by a progressive organisation of the extracellular matrix into a continuous basement membrane. This change is associated with a gradual condensation of peritubular cells inducing an increase of immunostaining. In adult animals, the tubular wall of epididymis is thicker than the lamina propria of seminiferous tubules. Both type IV collagen and laminin immunostaining paralleled during ontogenesis at the light-microscope level.  相似文献   

16.
Age changes in the structure of the seminal vesicles and in the rate of production of fructose and citric acid have been studied in a Brazilian (Nelore) zebu, from the fetal period to 36 months of age. At 3 and 6 months, the microscopic anatomy of the gland resembled that of the fetus; the tubules of the seminal vesicles had a reduced diameter and a low epithelial layer; only a few presented traces of secretion, and tissue contents of fructose and citric acid were accordingly low. At 12 months, the tubules were more ramified and had a larger diameter. In the 18-month-old animals the seminal vesicles presented substantial modifications; the tubules were large, with irregular lumina and surrounded by narrow stroma, the epithelial layer was higher than that of previous stages and its columnar cells had nuclei located basally. Tissue levels of fructose increased rapidly between 12 and 18 months. At 24 months, the seminal vesicles had reached the adult condition characterized by intense proliferation of tubules with irregular lumina and abundant secretory material. Numerous dark columnar cells were found in the epithelium. Seminal vesicles of Nelore zebus contain less fructose and citric acid than those of taurine bulls of comparable age.  相似文献   

17.
18.
The elongate paired testes of Sebastodes paucispinis consist of tubules which radiate from a single longitudinal sperm duct and terminate blindly at the periphery of the testis. They are lined by an epithelium consisting of columnar cells with distinct elliptical nuclei. During fall and winter, germ cells migrate inward from the fibrous capsule of the testis and become lodged among the tubule-boundary cells of the seminiferous tubules where they mature into primary spermatogonia. Each of these undergoes several mitotic divisions to produce large cysts of secondary spermatogonia. Subsequent spermatogenic divisions within these cysts produce large sperm-filled cysts which rupture, releasing the spermatozoa into the lumina of the seminiferous tubules. Seasonal cycles of cholesterol and carbohydrate production by the tubule-boundary cells suggest that they perform the same functions as the Leydig cells (androgen production) and Sertoli cells (nutrition) of other vertebrates. The paired fusiform ovaries consist of spongy tissue surrounded by thin-walled muscular ovisacs that converge posteriorly to form a genital duct. The spongy tissue is arranged in transverse lamellae composed of fibrovascular trunks which support epithelial and ovigerous tissue. A series of oocytes (up to 150 μ in diameter) is produced continually from oogonial nests distributed throughout each lamella. Vitellogenesis begins in July and continues throughout the summer. The follicle surrounding the mature oocyte consists of a bilaminar striated vitelline membrane, two epithelial layers (granulosa and theca), and a profuse capillary network. Spermatozoa appear within the ovaries from October to March. Ovulation probably precedes fertilization since spermatozoa were never found within pre-ovulatory or post-ovulatory follicles. The follicular epithelium regresses after ovulation but the capillary beds remain intact, thus providing a mechanism for fetal-maternal exchange of gases and nitrogenous wastes.  相似文献   

19.
三种波段电磁辐射致大鼠睾丸损伤的比较   总被引:1,自引:0,他引:1  
目的对比性探讨电磁脉冲(EMP)、S带高功率微波(S-HPM)和X带高功率微波(X-HPM)三种波段电磁辐射致睾丸组织受损的近期和远期效应及其相关敏感指标。方法雄性Wistar大鼠192只,随机分为EMP组、S-HPM组、X-HPM组和对照组,于照后不同时间点采集睾丸组织称重,光镜观察睾丸损伤,并用图像分析技术对曲细精管病变进行定量分析。结果三种波段电磁波辐照后睾丸结构和生精细胞形态损伤基本相似:早期睾丸重及睾丸重/体重比值呈下降趋势;曲细精管生精上皮变薄,生精细胞排列紊乱,精原细胞变性坏死并由管壁脱落,精母细胞和精子数量减少并团聚于管腔中央,支持细胞和间质细胞不同程度变性;曲细精管受损百分率显示EMP组最重,S-HPM最轻,生精细胞受损数量与程度显著增加(P0.05)。结论三种波段电磁辐射对睾丸生精细胞的损伤,具有速发性、时相性、分布不均一性特点;损伤程度呈EMPX-HPMS-HPM;睾丸曲细精管受损百分率可定量反映其损伤程度,可望成为评估电磁辐射致睾丸损伤的敏感指标之一。  相似文献   

20.
The dog pancreas was resected completely or partially. The morphofunctional status of the testicle was examined at varying times after operation with the use of histological, histochemical and morphometric tests. The alterations discovered attest to the dependence of the structural shifts in the testicle on the type of surgery on the pancreas. Resection of the end parts caused temporary and insignificant changes in the testis. Resection of the central part with ligation and intersection of the main excretory ducts gave rise to dystrophic changes in the spermatogenic epithelium, disorders in the structural elements responsible for hormonal activity. Complete resection of the pancreas was early in affecting the morphofunctional status of the testicle. Ten to 15 days after operation profound dystrophic and atrophic changes were detectable in all the cells of the testicle. Injection of insulin postponed the animal's death, decelerated but not prevented the development of regressive changes in the testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号