首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinical utility of murine mAbs is limited because many elicit Abs to murine Ig constant and variable regions in patients. An Ab humanized by the current procedure of grafting all the complementarity determining regions (CDRs) of a murine Ab onto the human Ab frameworks is likely to be less immunogenic, except that its murine CDRs could still evoke an anti-variable region response. Previous studies with anticarcinoma mAb CC49 showed that light chain LCDR1 and LCDR2 of humanized CC49 could be replaced with the corresponding CDRs of a human Ab with minimal loss of Ag-binding activity. The studies reported in this paper were undertaken to dissect the CC49 Ag-binding site to identify 1) specificity determining residues (SDRs), the residues of the hypervariable region that are most critical in Ag-Ab interaction, and 2) those residues that contribute to the idiotopes that are potential targets of patients' immune responses. A panel of variants generated by genetic manipulation of the murine CC49 hypervariable regions were evaluated for their relative Ag-binding affinity and reactivity to sera from several patients who had been immunized with murine CC49. One variant, designated HuCC49V10, retained only the SDRs of CC49 and does not react with the anti-variable region Abs of the sera from the murine CC49-treated patients. These studies thus demonstrate that the genetic manipulation of Ab variable regions can be accomplished by grafting only the SDRs of a xenogeneic Ab onto human Ab frameworks. This approach may reduce the immunogenicity of Abs to a minimum.  相似文献   

2.
SDR grafting--a new approach to antibody humanization   总被引:6,自引:0,他引:6  
A major impediment to the clinical utility of the murine monoclonal antibodies is their potential to elicit human anti-murine antibody (HAMA) response in patients. To circumvent this problem, murine antibodies have been genetically manipulated to progressively replace their murine content with the amino acid residues present in their human counterparts. To that end, murine antibodies have been humanized by grafting their complementarity determining regions (CDRs) onto the variable light (V(L)) and variable heavy (V(H)) frameworks of human immunoglobulin molecules, while retaining those murine framework residues deemed essential for the integrity of the antigen-combining site. However, the xenogeneic CDRs of the humanized antibodies may evoke anti-idiotypic (anti-Id) response in patients. To minimize the anti-Id response, a procedure to humanize xenogeneic antibodies has been described that is based on grafting, onto the human frameworks, only the specificity determining residues (SDRs), the CDR residues that are most crucial in the antibody-ligand interaction. The SDRs are identified through the help of the database of the three-dimensional structures of the antigen-antibody complexes of known structures or by mutational analysis of the antibody-combining site. An alternative approach to humanization, which involves retention of more CDR residues, is based on grafting of the 'abbreviated' CDRs, the stretches of CDR residues that include all the SDRs. A procedure to assess the reactivity of the humanized antibody to sera from patients who had been administered the murine antibody has also been described.  相似文献   

3.
The tumor-associated glycoprotein (TAG)-72 is expressed in the majority of human adenocarcinomas but is rarely expressed in most normal tissues, which makes it a potential target for the diagnosis and therapy of a variety of human cancers. Here we describe the construction, affinity maturation, and biological characterization of an anti-TAG-72 humanized antibody with minimum potential immunogenicity. The humanized antibody was constructed by grafting only the specificity-determining residues (SDRs) within the complementarity-determining regions (CDRs) onto homologous human immunoglobulin germ line segments while retaining two mouse heavy chain framework residues that support the conformation of the CDRs. The resulting humanized antibody (AKA) showed only about 2-fold lower affinity compared with the original murine monoclonal antibody CC49 and 27-fold lower reactivity to patient serum compared with the humanized antibody HuCC49 that was constructed by CDR grafting. The affinity of AKA was improved by random mutagenesis of the heavy chain CDR3 (HCDR3). The highest affinity variant (3E8) showed 22-fold higher affinity compared with AKA and retained the original epitope specificity. Mutational analysis of the HCDR3 residues revealed that the replacement of Asn(97) by isoleucine or valine was critical for the affinity maturation. The 3E8 labeled with (125)I or (131)I showed efficient tumor targeting or therapeutic effects, respectively, in athymic mice with human colon carcinoma xenografts, suggesting that 3E8 may be beneficial for the diagnosis and therapy of tumors expressing TAG-72.  相似文献   

4.
The use of anti-idiotypic antibodies as immunogens represents one potential approach to active specific immunotherapy of cancer. Two panels of syngeneic monoclonal anti-idiotypic antibodies were generated. One panel was directed against mAb CC49 and the other to mAb COL-1. mAb CC49 recognizes the pancarcinoma antigen (Ag), tumor-associated glycoprotein-72 (TAG-72), and mAb COL-1 recognizes carcinoembryonic antigen (CEA). Seven anti-idiotypic (AI) antibodies (Ab2) designated AI49-1–7 were generated that recognize the variable region of mAb CC49. These mAb were shown to inhibit the interaction of mAb CC49 (Ab1) with TAG-72 (Ag). Five anti-idiotypic antibodies designated CAI-1–5 were also generated to the anti-CEA mAb, COL-1 (Ab1). These Ab2 were shown to inhibit the interaction between COL-1 (Ab1) and CEA (Ag). Immunization of mice, rats, and rabbits with Ab2 directed against CC49 or COL-1 could not elicit specific Ab3 humoral immune responses, i.e., antibody selectively reactive with their respective target antigens. However, immunization of mice with the CC49 anti-idiotypic antibody (Ab2), designated AI49-3, could induce a delayed-type hypersensitivity response (DTH) specific for tumor cells that express TAG-72. Similarly, immunization of mice with an anti-idiotypic antibody directed against COL-1, designated CAI-1, could induce specific DTH cell-mediated immune responses to murine tumor cells that express human CEA on their surface. These results thus demonstrate that while some anti-idiotype mAb may not be potent immunogens in eliciting Ab3 humoral responses, they are capable of eliciting specific cellular immune responses against human carcinoma-associated antigens. This type of mAb may ultimately be useful in active immunotherapy protocols for human carcinoma.Some of the studies described in this paper were in partial fulfillment of requirements for the completion of Dr. Irvine's dissertation at the George Washington University  相似文献   

5.
We previously constructed a humanized antibody, HuS10, by grafting the complementarity-determining regions (CDRs) of a parental murine monoclonal antibody into the homologous human antibody sequences. This process is termed CDR grafting. Some residues that were thought to affect the CDR loops and stabilize the structure of the variable regions were retained in the framework region. HuS10 exhibited in vivo virus-neutralizing activity, but its murine content had the potential to elicit immune responses in patients. In this study, to minimize the immunogenic potential of HuS10, we replaced 17 mouse residues in HuS10 with the comparable human residues using specificity-determining residue (SDR)-grafting and de-immunization methods. The resultant humanized antibody, HzS-III, had the same affinity and epitope specificity as HuS10 and had reduced immunogenic potential, as assessed by T-cell epitope analysis. Thus, SDR grafting in combination with de-immunization may be a useful strategy for minimizing the immunogenicity of humanized antibodies. In addition, HzS-III may be a good candidate for immunoprophylaxis of HBV infection.  相似文献   

6.
SM5-1 is a mouse monoclonal antibody which has a high specificity for melanoma, hepatocellular carcinoma, and breast cancer, making it a promising candidate for cancer targeting therapy. We have therefore attempted to construct a humanized antibody of SM5-1 to minimize its immunogenicity for potential clinical use. Using a molecular model of SM5-1 built by computer-assisted homology modeling, framework region (FR) residues of potential importance to the antigen binding were identified. Then, a humanized version of SM5-1 was generated by transferring these mouse key FR residues onto a human framework that was selected based on homology to the mouse framework, together with the mouse complementarity-determining region (CDR) residues. This humanized antibody retained only six murine residues outside of the CDRs but was shown to possess affinity and specificity comparable to that of the parental antibody, suggesting that it might have the potential to be developed for future clinical use.  相似文献   

7.
To investigate the role of Vernier zone residues, which are comprised in the framework regions and underlie the complementarity-determining regions (CDRs) of antibodies, in the specific, high affinity interactions of antibodies with their targets, we focused on the variable domain fragment of murine anti-human epidermal growth factor receptor antibody 528 (m528Fv). Grafting of the CDRs of m528Fv onto a selected framework region of human antibodies, referred to as humanization, reduced the antibody's affinity for its target by a factor of 1/40. The reduction in affinity was due to a substantial reduction in the negative enthalpy change associated with binding. Crystal structures of the ligand-free antibody fragments showed no noteworthy conformational changes due to humanization, and the loop structures of the CDRs of the humanized antibodies were identical to those of the parent antibodies. Several mutants of the CDR-grafted (humanized) variable domain fragment (h528Fv), in which some of the Vernier zone residues in the heavy chain were replaced with the parental murine residues, were constructed and prepared using a bacterial expression system. Thermodynamic analyses of the interactions between the mutants and the soluble extracellular domain of epidermal growth factor receptor showed that several single mutations and a double mutation increased the negative enthalpy and heat capacity changes. Combination of these mutations, however, led to somewhat reduced negative enthalpy and heat capacity changes. The affinity of each mutant for the target was within the range for the wild-type h528Fv, and this similarity was due to enthalpy-entropy compensation. These results suggest that Vernier zone residues make enthalpic contributions to antigen binding and that the regulation of conformational entropy changes upon humanization of murine antibodies must be carefully considered and optimized.  相似文献   

8.
产生免疫原性的残基主要是位于蛋白表面的暴露残基,为了消除鼠抗体对人的免疫原性,利用表面再塑的方法对本室克隆的鼠抗人纤维蛋白抗体单链Fv片段进行了人源化分子设计.首先确定了鼠及人Fv片段的表面残基,在此基础上分析了鼠与人抗体Fv片段表面残基的差异,将存在差异的鼠抗体的表面残基换成人的,从而实现鼠抗体的人源化.提出了残基最高频率人源化及最相似链人源化两种分子设计方案.人源化的鼠抗人纤维蛋白抗体单链Fv片段的结构经Profiles-3D检测证明合理,替换的表面残基的溶剂可及性未变,而且未对CDRs的空间构象产生明显影响,应不会影响与纤维蛋白的亲和力,为鼠抗体人源化实验研究奠定了基础.  相似文献   

9.
产生免疫原性的残基都是位于蛋白表面的暴露残基,为了消除鼠抗体对人的免疫原性,利用表面再塑方法对本室克隆的鼠抗人纤维蛋白抗体单链Fv片断进行了人源化分子设计。首先确定了鼠及人Fv表面残基,在此基础上分析了鼠与人Fv间表面残基的差异,将有差异的鼠表面残基换成人的。提出了残基最高频率人源化及最相似链人源化两种人源化方案。人源化后鼠抗人纤维蛋白抗体单链Fv的结构经Profile-3D验证是合理的,置换的表面残基溶液可及性未变,且未影响CDRs的结构,应不会影响与纤维蛋白的亲和力,为鼠抗体人源化实验研究奠定了基础。  相似文献   

10.
Humanized Abs are created by combining, at the genetic level, the complementarity-determining regions of a murine mAb with the framework sequences of a human Ab variable domain. This leads to a functional Ab with reduced immunogenic side effects in human therapy. In this study, we report a new approach to humanizing murine mAbs that may reduce immunogenicity even further. This method is applied to humanize the murine anti-human CD28 Ab, 9.3. The canonical structures of the hypervariable loops of murine 9.3 were matched to human genomic V gene sequences whose hypervariable loops had identical or similar canonical structures. Framework sequences for those human V genes were then used, unmodified, with the 9.3 complementarity-determining regions to construct a humanized version of 9.3. The humanized 9.3 and a chimeric 9.3 control were expressed in Escherichia coli as Fab. The humanized Fab showed a moderate loss in avidity in a direct binding ELISA with immobilized CD28-Ig fusion protein (CD28-Ig). Humanized 9.3 blocked ligation of CD28-Ig to cells expressing the CD28 receptor CD80. Lastly, the humanized 9.3 showed biological activity as an immunosuppressant by inhibiting a MLR.  相似文献   

11.
We have constructed a humanized antibody with specificity for the pre-S2 surface antigen of hepatitis B virus (HBV) by grafting the complementarity determining regions (CDRs) of parental murine monoclonal antibody (mAb) into human anti-Sm antibody framework regions. The humanized antibody has a substitution at position 94 in a framework region of the heavy chain variable region, and exhibits the same antigen binding affinity as the parental murine monoclonal and chimeric antibodies. In order to assess the stability of these antibodies, thermal inactivation of the parental, chimeric and humanized antibodies was analyzed. Fifty percent inactivation of the chimeric and humanized antibodies was observed at 63.7 degrees C and 68.7 degrees C, respectively, compared to 55.0 degrees C for murine antibody. The humanized antibody also exhibited increased stability against denaturant. Guanidine-induced unfolding monitored by the changes in fluorescence intensity at 360 nm showed that midpoints of the transition of the chimeric and humanized antibodies were 2.47 M and 2.56 M, respectively, whereas that of the murine antibody was 1.36 M.  相似文献   

12.
目前鼠源抗体人源化是克服其免疫原性的主要手段。在结构模建基础上的计算机分析为抗体人源化设计提供了必不可少的辅助。本设计首先对肝细胞癌特异性抗体HAb25可变区进行了同源模建,然后分析决定CDR初始构象的可能残基,包括正则结构关键残基、CDR可接触残基、界面残基、包埋残基,以及与免疫识别密切相关的表面残基,综合考虑并结合多重序列比较,参照人源化模板,提出了人源化替代的方案。  相似文献   

13.
Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 × 10−9 to 1.5 × 10−11 m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 × 10−10 to <1.8 × 10−12 m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 °C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.  相似文献   

14.
Hou S  Li B  Wang L  Qian W  Zhang D  Hong X  Wang H  Guo Y 《Journal of biochemistry》2008,144(1):115-120
4C8 is a new mouse anti-human CD34 monoclonal antibody (mAb), which recognizes class II CD34 epitopes and can be used for clinical hematopoietic stem/progenitor cell selection. In an attempt to improve its safety profiles, we have developed a humanized antibody of 4C8 by complementarity-determining region (CDR) grafting method in this study. Using a molecular model of 4C8 built by computer-assisted homology modelling, framework region (FR) residues of potential importance to the antigen binding were identified. A humanized version of 4C8, denoted as h4C8, was generated by transferring these key murine FR residues onto a human antibody framework that was selected based on homology to the mouse antibody framework, together with the mouse CDR residues. The resultant humanized antibody was shown to possess antigen-binding affinity and specificity similar to that of the original murine antibody, suggesting that it might be an alternative to mouse anti-CD34 antibodies routinely used clinically.  相似文献   

15.
Two novel approaches of recombinant PCR technology were employed to graft the complementarity determining regions from a murine monoclonal antibody (mAb) onto human antibody frameworks. One approach relied on the availability of cloned human variable region templates, whereas the other strategy was dependent only on human variable region protein sequence data. The transient expression of recombinant humanized antibody was driven by the adenovirus major late promoter and was detected 48 hrs post-transfection into non-lymphoid mammalian cells. The application of these new approaches enables the expression of a recombinant humanized antibody just 6 weeks after initiating the cDNA cloning of the murine mAb.  相似文献   

16.
为设计来自抗体的短肽 ,以抗肿瘤坏死因子 (TNF)嵌合抗体 (cA2 )CDRs为模板 ,在其两侧各加 3个随机氨基酸残基 ( X3 CDR X3 ) ,构建了 6个以CDR为基础的肽库 .经过 3轮亲和选择 ,挑取单克隆 ,进一步经ELISA检测TNF阳性噬菌体克隆 ,分离得到 7个ELISA阳性较好的噬菌体肽克隆 ,分别命名为CDR2L1、CDR2L2、CDR2L3、CDR1L1、CDR2H1、CDR3H1、CDR3H 2 .应用MTT方法 ,检测 7个克隆对TNF生物学活性的拮抗作用 .结果显示 :来自CDR2L ,CDR3H肽库中的CDR2L2、CDR2L3,CDR3H2噬菌体肽具有明显的拮抗TNF诱导L92 9细胞的细胞毒作用 ,其中以CDR2L2噬菌体肽的拮抗活性最强 .而来源于CDR1L ,CDR2H肽库的CDR1L1和CDR2H1噬菌体肽和来自CDR2L ,CDR3H肽库中的CDR2L1和CDR3H1噬菌体肽没有明显的拮抗TNF作用 .研究结果初步表明 :从cA2抗体CDR肽库中筛选得到的噬菌体CDR模拟肽具有亲本抗体相似的结合活性和生物学效应 ,从而为开发已知抗体 (特别是治疗用抗体 )CDR为基础的肽药物创建一个技术平台奠定基础  相似文献   

17.
To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.  相似文献   

18.
A humanized version of the mouse anti-lysozyme Ab D1.3 was previously constructed as an Fv fragment and its structure was crystallographically determined in the free form and in complex with lysozyme. Here we report five new crystal structures of single-amino acid substitution mutants of the humanized Fv fragment, four of which were determined as Fv-lysozyme complexes. The crystals were isomorphous with the parent forms, and were refined to free R values of 28-31% at resolutions of 2.7-2.9 A. Residue 27 in other Abs has been implicated in stabilizing the conformation of the first complementarity-determining region (CDR) of the H chain, residues 31-35. We find that a Phe-to-Ser mutation at 27 alters the conformation of immediately adjacent residues, but this change is only weakly transmitted to Ag binding residues in the nearby CDR. Residue 71 of the H chain has been proposed to control the relative disposition of H chain CDRs 1 and 2, based on the bulk of its side chain. However, in structures we determined with Val, Ala, or Arg substituted in place of Lys at position 71, no significant change in the conformation of CDRs 1 and 2 was observed.  相似文献   

19.
Yi-Fan Zhang 《MABS-AUSTIN》2017,9(3):419-429
Rabbit monoclonal antibodies (RabMAbs) can recognize diverse epitopes, including those poorly immunogenic in mice and humans. However, there have been only a few reports on RabMAb humanization, an important antibody engineering step usually done before clinical applications are investigated. To pursue a general method for humanization of RabMAbs, we analyzed the complex structures of 5 RabMAbs with their antigens currently available in the Protein Data Bank, and identified antigen-contacting residues on the rabbit Fv within the 6 Angstrom distance to its antigen. We also analyzed the supporting residues for antigen-contacting residues on the same heavy or light chain. We identified “HV4” and “LV4” in rabbit Fvs, non-complementarity-determining region (CDR) loops that are structurally close to the antigen and located in framework 3 of the heavy chain and light chain, respectively. Based on our structural and sequence analysis, we designed a humanization strategy by grafting the combined Kabat/IMGT/Paratome CDRs, which cover most antigen-contacting residues, into a human germline framework sequence. Using this strategy, we humanized 4 RabMAbs that recognize poorly immunogenic epitopes in the cancer target mesothelin. Three of the 4 humanized rabbit Fvs have similar or improved functional binding affinity for mesothelin-expressing cells. Interestingly, 4 immunotoxins composed of the humanized scFvs fused to a clinically used fragment of Pseudomonas exotoxin (PE38) showed stronger cytotoxicity against tumor cells than the immunotoxins derived from their original rabbit scFvs. Our data suggest that grafting the combined Kabat/IMGT/Paratome CDRs to a stable human germline framework can be a general approach to humanize RabMAbs.  相似文献   

20.
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in malignant tumors and plays important roles in tumor progression. Thus, L1CAM could serve as a therapeutic target and anti-L1CAM antibodies may have potential as anticancer agents. However, L1CAM is expressed in neural cells and the druggability of anti-L1AM antibody must be validated at the earliest stages of preclinical study. Here, we generated a human monoclonal antibody that is cross-reactive with mouse L1CAM and evaluated its pharmacokinetic properties and anti-tumor efficacy in rodent models. First, we selected an antibody (Ab4) that binds human and mouse L1CAM from the human naïve Fab library using phage display, then increased its affinity 45-fold through mutation of 3 residues in the complementarity-determining regions (CDRs) to generate Ab4M. Next, the affinity of Ab4M was increased 1.8-fold by yeast display of single-chain variable fragment containing randomly mutated light chain CDR3 to generate Ab417. The affinities (KD) of Ab417 for human and mouse L1CAM were 0.24 nM and 79.16 pM, respectively. Ab417 specifically bound the Ig5 domain of L1CAM and did not exhibit off-target activity, but bound to the peripheral nerves embedded in normal human tissues as expected in immunohistochemical analysis. In a pharmacokinetics study, the mean half-life of Ab417 was 114.49 h when a single dose (10 mg/kg) was intravenously injected into SD rats. Ab417 significantly inhibited tumor growth in a human cholangiocarcinoma xenograft nude mouse model and did not induce any adverse effect in in vivo studies. Thus, Ab417 may have potential as an anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号