首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinins in humans     
The kinin peptide system in humans is complex. Whereas plasma kallikrein generates bradykinin peptides, glandular kallikrein generates kallidin peptides. Moreover, a proportion of kinin peptides is hydroxylated on proline(3) of the bradykinin sequence. We established HPLC-based radioimmunoassays for nonhydroxylated and hydroxylated bradykinin and kallidin peptides and their metabolites in blood and urine. Both nonhydroxylated and hydroxylated bradykinin and kallidin peptides were identified in human blood and urine, although the levels in blood were often below the assay detection limit. Whereas kallidin peptides were more abundant than bradykinin peptides in urine, bradykinin peptides were more abundant in blood. Bradykinin and kallidin peptide levels were higher in venous than arterial blood. Angiotensin-converting enzyme inhibition increased blood levels of bradykinin, but not kallidin, peptides. Reactive hyperemia had no effect on antecubital venous levels of bradykinin or kallidin peptide levels. These studies demonstrate differential regulation of the bradykinin and kallidin peptide systems, and indicate that blood levels of bradykinin peptides are more responsive to angiotensin-converting enzyme inhibition than blood levels of kallidin peptides.  相似文献   

2.
Four hybridoma cell lines have been established that secrete monoclonal antibodies to nonapeptide bradykinin. Bradykinin coupled to ovalbumin, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as coupling agent, was used to immunize BALB/c mice. Spleen cells from the immunized animals were fused to P3-X63-AG8-653 mouse myeloma cells. The resultant hybrid cells were screened by enzyme-linked immunoassay for production of antibodies to bradykinin. Hybrids from four positive wells were subcloned by limiting dilution and expanded as ascites tumor into pristane-primed mice. All the four hybrids secreted monoclonal antibodies of IgG1 (k) isotype. Unlabeled peptides bradykinin, lysyl-bradykinin (kallidin) and methionyl-lysyl-bradykinin competed with the radiolabeled [Tyr1]kallidin for monoclonal antibody binding sites. These antibodies recognized preferentially either NH2- or COOH-terminals of the nonapeptide bradykinin and can distinguish between des-Arg1-bradykinin and des-Arg9-bradykinin. Bradykinin fragments smaller than eight residues were not recognized by these antibodies. Monoclonal antibodies BK-D6A5, BK-B6C9 and BK-A3D9 neutralized the smooth muscle contractile activity of bradykinin. An enzyme-linked immunoassay developed using these monoclonal antibodies showed the effective range of bradykinin determination between 5 and 150 ng.  相似文献   

3.
Oestrus and anoestrous mongrel dogs were anaesthetized with chloralose-urethane. In one group, the ovaries were isolated in situ and the effects of a 15-min infusion of PGF-2alpha or PGE-2 on perfusion pressure were measured. In the other group, heated thermocouples were introduced into the stroma of each ovary to measure the changes of local blood flow in response to PGF-2 alpha and PGE-2 infused into the ovarian bursa for 15 min. Intra-arterial infusion of 25.50, 100 or 200 ng PGF-2alpha/kg/min did not affect perfusion pressure; PGE-2 doses of 3.1, 6.2, 12.5 or 25 ng/kg/min caused reductions in proportion to the dose. All doses of PGE-2alpha (50.0, 100 or 200 ng/kg/min) or PGE-2 (25, 50 or 100 ng/kg/min) increased blood flow in the ovarian stroma in proportion to the dose when administered by infusion into the ovarian bursa. There were no differences in the results from oestrous and anoestrous dogs. It is concluded that PGF-2alpha changes intraovarian blood distribution without interfering with the total blood flow while PGE-2 increases both the total and local ovarian blood flow.  相似文献   

4.
Our previous study (27) showed that the cardiac sympathetic afferent reflex (CSAR) was enhanced in dogs with congestive heart failure. The aim of this study was to test whether blood volume expansion, which is one characteristic of congestive heart failure, potentiates the CSAR in normal dogs. Ten dogs were studied with sino-aortic denervation and bilateral cervical vagotomy. Arterial pressure, left ventricular pressure, left ventricular epicardial diameter, heart rate, and renal sympathetic nerve activity were measured. Coronary blood flow was also measured and, depending on the experimental procedure, controlled. Blood volume expansion was carried out by infusion of isosmotic dextran into a femoral vein at 40 ml/kg at a rate of 50 ml/min. CSAR was elicited by application of bradykinin (5 and 50 microg) and capsaicin (10 and 100 microg) to the epicardial surface of the left ventricle. Volume expansion increased arterial pressure, left ventricular pressure, left ventricular diameter, and coronary blood flow. Volume expansion without controlled coronary blood flow only enhanced the RSNA response to the high dose (50 microg) of epicardial bradykinin (17. 3 +/- 1.9 vs. 10.6 +/- 4.8%, P < 0.05). However, volume expansion significantly enhanced the RSNA responses to all doses of bradykinin and capsaicin when coronary blood flow was held at the prevolume expansion level. The RSNA responses to bradykinin (16. 9 +/- 4.1 vs. 5.0 +/- 1.3% for 5 microg, P < 0.05, and 28.9 +/- 3.7 vs. 10.6 +/- 4.8% for 50 microg, P < 0.05) and capsaicin (29.8 +/- 6.0 vs. 9.3 +/- 3.1% for 10 microg, P < 0.05, and 34.2 +/- 2.7 vs. 15.1 +/- 2.7% for 100 microg, P < 0.05) were significantly augmented. These results indicate that acute volume expansion potentiated the CSAR. These data suggest that enhancement of the CSAR in congestive heart failure may be mediated by the concomitant cardiac dilation, which accompanies this disease state.  相似文献   

5.
Prolongation of bradykinin half-life following kininase inhibition has been proposed as the reason for the potentiation of kinin effects. We have reassessed this assumption by using three different isolated smooth muscle preparations and simultaneously studying the inhibition of kininase activity and the potentiation of bradykinin effects by enalaprilat and BPP9a. Rat duodenum displayed higher total kininase activity, metabolizing half of the added bradykinin in 6.5 min, while this time for rat uterus was greater than 60 min. Guinea-pig ileum showed the intermediate value of 14.6 min. Enalaprilat and BPP9a slowed the metabolism of bradykinin by 50-100% in rat duodenum and by 50-180% in guinea-pig ileum, showing that a significant fraction of total kininase activity appears to be due to kininase II. In rat duodenum, an almost complete blockade of kininase activity was achieved when bacitracin and mergetpa were used together with enalaprilat. Enalaprilat and BPP9a potentiated bradykinin effects in guinea-pig ileum and rat uterus. In contrast, bradykinin-induced relaxations and contractions in rat duodenum were not potentiated by enalaprilat, BPP9a, or by the enzyme inhibitor mixture (enalaprilat--bacitracin--mergetpa). The results suggest that inhibition of bradykinin enzymatic metabolism by kininases does not necessarily lead to the potentiation of bradykinin effects.  相似文献   

6.
Using the forearm technique, the effect of bradykinin on muscular blood flow and glucose uptake in healthy man in the postabsorptive state (n = 8) was studied at different doses of an intra-arterial infusion of bradykinin (2.5-150 ng/min). The blood flow of the forearm was increased dose-dependently from basal 2.8 +/- 0.3 up to 14.7 +/- 2.8 ml/(100 g X min). At lower bradykinin concentrations (2.5-25 ng/min), muscular glucose uptake was raised parallel to the increased blood flow from basal 0.71 +/- 0.30 to 2.93 +/- 0.50 mumol/(100 g X min). However, at higher doses (50-150 ng/min) glucose uptake was decreased again. Thus, the greatest metabolic effect of bradykinin was seen at a calculated bradykinin concentration of approximately 1 X 10(-9)M in the blood.  相似文献   

7.
Six structural analogs of bradykinin were tested to determine whether they antagonize the vasodilator response to bradykinin. The dog hindlimb preparation was used as a bioassay. Mongrel dogs were anesthetized and the femoral arteries were isolated and fitted with a noncanulating electromagnetic flow probe. An indwelling catheter was also placed for administration of saline, bradykinin, or the various analogs. The vasodilatory responses of the hindlimb circulation to bolus doses of bradykinin from 1 of 20 ng were tested during vehicle or analog administration at 1 and 10 micrograms/min. Bradykinin analogs which were characterized by amino acid replacement by beta-(2-thienyl)-L-alanine (Thi) at positions 5 and 8, D-phenylalanine (D-Phe) at position 7, and an additional replacement of hydroxyproline at position 2 or 3 were effective antagonists of bradykinin. The decapeptide bradykinin analog (BKA06) D-Arg-(Hyp3-Thi5-D-Phe7-Thi)-BK was the most potent analog tested, producing a full log dose shift in the dose-response curve to bradykinin at the 10 micrograms/min (4 nmole/min) infusion rate. None of the analogs we tested produced vasodilation or had any effect upon systemic blood pressure at the concentrations tested. Our results suggest that these structural analogs of bradykinin may be effective pharmacologic tools to study the role of endogenous kinins in the control of vascular resistance and circulatory homeostasis.  相似文献   

8.
1 alpha-beta-carboxypropionyl-cyclo(9----1 epsilon)-[Lys1, Gly6]bradykinin (Suc-c[Lys1, Gly6]B), 1 alpha-beta-carboxypropionyl-cyclo(10----1 epsilon)kallidin (Suc-cK), cyclo(10 gamma----1 epsilon)-[Glu10]kallidin (c[Glu10]K) and cyclo(11 gamma----1 epsilon)kallidylglutamic acid (cKG) were synthesized. Suc-c[Lys1, Gly6]B and Suc-cK were prepared by acylating the appropriate cyclopeptides with succinic anhydride. c[Glu10]K and cKG were obtained by the classic peptide synthesis, the cyclization being carried out with 61 and 42% yields, respectively. The protecting groups were then eliminated by catalytic hydrogenation. c[Glu10]K and cKG exerted myotropic action on isolated rat uterus (alpha 0.73 and 0.89, pD2 6.61 and 8.61, respectively). cKG displayed direct myotropic activity with respect to electrically stimulated rat vas deferens and guinea-pig ileum, potentiating the contractions (by 100%) in response to electric stimuli. c[Glu10]K and cKG elicit histamine release in isolated rat mast cells (EC30 4.91.10(-5) and 1.47.10(-6) M, respectively). Both cyclopeptides alter arterial pressure following intravenous administration to anaesthetized rats, cats and dogs and affect heart rate. In all assays cKG is more active than c[Glu10]K. Suc-c[Lys1, Gly6]B and Suc-cK do not possess myotropic, histamine-releasing or hypotensive activity, though they were found to elicit a transient increase of bloodflow in cats and dogs.  相似文献   

9.
The solid phase synthesis of a partially modified retro-inverso analogue of the bradykinin potentiating peptide BPP9a, [gLys6, (R,S)-mPhe7, Ala8] BPP9a is described. The analogue, which is active in vitro and in vivo, displays prolonged resistance towards cleavage by angiotensin converting enzyme (ACE).  相似文献   

10.
The relationship between bradykinin action and its concentration was examined on isolated rings of the rabbit aorta, femoral artery, jugular vein and on isolated strips of the rat portal vein. The sensitivity of femoral artery and portal vein smooth muscles to bradykinin was disclosed. Venous smooth muscles were more sensitive to bradykinin as compared with arterial smooth muscles. Dissociation constants for the rabbit aorta, femoral artery, jugular vein and for the rat portal vein were 3.98 X 10(-6), 6.3 X 10(-6), 1.26 X 10(-7), and 7.6 X 10(-9)M, respectively. Effects of endogenous bradykinin in vivo might result from its primary action on the venous smooth muscle, action on the arterial smooth muscle and veno-arterial interactions.  相似文献   

11.
Synthetic analogues of the bradykinin potentiating nonapeptide BPP9alpha indicate significantly different structural requirements for potentiation of the bradykinin (BK)-induced smooth muscle contraction (GPI) and the inhibition of isolated somatic angiotensin I-converting enzyme (ACE). The results disprove the ACE inhibition as the only single mechanism and also the direct interaction of potentiating peptides with the bradykinin receptors in transfected COS-7 cells as molecular mechanism of potentiation. Our results indicate a stimulation of inositol phosphates (IPn) formation independently from the B2 receptor. Furthermore, the results with La3+ support the role of extracellular Ca2+ and its influx through corresponding channels. The missing effect of calyculin on the GPI disproves the role of phosphatases in the potentiating action. These experimental studies should not only contribute to a better understanding of the potentiating mechanisms but also incorporate a shift in the research towards the immune system, in particular towards the immunocompetent polymorphonuclear leukocytes. The chemotaxis of these cells can be potentiated most likely by exclusive inhibition of the enzymatic degradation of bradykinin. Thus the obtained results give evidence that the potentiation of the bradykinin action can occur by different mechanisms, depending on the system and on the applied potentiating factor.  相似文献   

12.
The pharmacological properties of bradykinin receptors were characterized in rat cultured vascular smooth muscle cells (VSMCs) using [3H]-bradykinin as a ligand. Analysis of binding isotherms gave an apparent equilibrium dissociation constant (K(D)) of 1.2 +/- 0.2 nM and a maximum receptor density (Bmax) of 47.3 +/- 4.4 fmol/mg protein. The specific binding of [3H]-bradykinin to VSMCs was inhibited by the B2 receptor-selective agonists (bradykinin and kallidin) and antagonists ([D-Arg0, Hyp3, Thi5, D-Tic7, Oic8]-bradykinin (Hoe 140) and [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin) with an order of potency as kallidin = bradykinin = Hoe 140 > [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin, but not by a B1 receptor-selective agonist (des-Arg9-bradykinin) and antagonist ([Leu8, des-Arg9]-bradykinin). Stimulation of VSMCs by bradykinin produced a concentration-dependent inositol phosphate (IP) accumulation, and initial transient peak of [Ca2+]i with half-maximal responses (pEC50) were 7.53 and 7.69, respectively. B2 receptor-selective antagonists (Hoe 140 and [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin) significantly antagonized the bradykinin-induced responses with pK(B) values of 8.3-8.7 and 7.2-7.9, respectively. Pretreatment of VSMCs with pertussis toxin (100 ng/ml, 24 h) did not alter the bradykinin-induced inositol phosphate accumulation and [Ca2+]i changes in VSMCs. Removal of external Ca2+ led to a significant attenuation of responses induced by bradykinin. Influx of external Ca2+ was required for the bradykinin-induced responses, since Ca2+-channel blockers, nifedipine, verapamil, and Ni2+, partially inhibited the bradykinin-induced IP accumulation and Ca2+ mobilization. These results demonstrate that bradykinin stimulates phosphoinositide hydrolysis and Ca2+ mobilization via a pertussis toxin-insensitive G-protein in rat VSMCs. Bradykinin B2 receptors may be predominantly mediating IP accumulation and subsequently induction of Ca2+ mobilization may function as the transducing mechanism for bradykinin-stimulated contraction of vascular smooth muscle.  相似文献   

13.
This study was conducted to define further the role of catechol estrogens (CE) as intermediates in estrogen-stimulated uterine hyperemia. Previous studies from our laboratory strongly suggest that changes in uterine blood flow (UBF) result from alterations in uterine arterial tone (distensibility) and/or contractility (reactivity to alpha 1-adrenergic agonists). Tone changes appear to set the baseline rate of flow, whereas contractility changes result in short-term reductions in luminal diameter. Changes in uterine arterial tone and contractility result from alterations in Ca2+ uptake through potential-sensitive channels (PSCs) and receptor-operated channels (ROCs), respectively. Uterine and mesenteric arteries were removed from 6 gilts at estrus (Day 0), 9 gilts on Day 13 of gestation (high estrogen, high UBF), and 8 gilts on Day 13 of the estrous cycle (low estrogen, low UBF). Arterial measurements included initial tone (baseline perfusion pressure [BPP] to a constant intraluminal flow) and increased tone after exposure to KCl, the contractility in response to the alpha 1-agonist phenylephrine, and specific uptake of 45Ca before and after exposure to the CE 4-hydroxylated estradiol (4OH-E2). Contractility of uterine arteries from Day 13 nonpregnant (NP) and Day 13 pregnant (P) gilts to phenylephrine were similar and significantly greater (p less than 0.01) than contractility of vessels from estrous gilts. The BPP and responses of uterine arteries from Day 13 NP gilts to KCl were greater (p less than 0.05) than the BPP and responses of arteries from Day 13 P and estrous gilts, which were similar to each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
B2 bradykinin receptor-like binding in rat renomedullary interstitial cells   总被引:1,自引:0,他引:1  
A particulate fraction from cultured rat renomedullary interstitial cells (RRIC) was prepared for bradykinin (BK) binding studies. Incubation of three radiolabeled BK analogs, [125I-Tyr1]kallidin, [125I-Tyr5]-BK, and [125I-Tyr8]-BK, with the particulate fraction resulted in degradation of these peptides. Assay conditions which prevented hydrolysis of these radiolabeled kinins were determined. Under these conditions, direct binding studies were performed with [125I-Tyr1]kallidin (TlK) as the radioligand. BK binding affinity, apparent Kassoc. = 1.3 X 10(9) M-1, and specificity, determined with 51 BK analogs, were consistent with those expected of a B2 BK receptor.  相似文献   

15.
In C9 rat liver cells bradykinin and kallidin increased (approximately 2-fold) the intracellular concentration of calcium, but the B1 agonist, des-Arg9-bradykinin did not. The effect of bradykinin was inhibited by the B2 antagonists, Hoe 140 and N-alpha-adamantaneacetyl-D-Arg-[Hyp3, Thi5,8, D-Phe7]-bradykinin, but not by the B1 antagonist, des-Arg9-[Leu8]-bradykinin. The action of bradykinin was diminished, but not abolished, in medium without calcium. The peptide was able to increase intracellular calcium concentration in cells treated with thapsigargin. Bradykinin action was not observed in cells previously stimulated with this local mediator: however, under the same conditions, angiotensin II induced a clear increase in intracellular calcium concentration. Our data indicate that activation of bradykinin B2 receptors increase intracellular calcium concentrations by inducing both gating of the cation and intracellular mobilization in C9 liver cells. In addition, homologous desensitization was observed.  相似文献   

16.
Smith RS  Gao L  Chao L  Chao J 《Biological chemistry》2008,389(6):725-730
Adenovirus-mediated kallikrein delivery has been shown to promote blood vessel growth in the limb under both ischemic and normoperfused conditions. Here we investigated whether a continuous supply of kallikrein and kinin peptide can induce neovascularization in a rat model of hindlimb ischemia. Rats underwent femoral artery ligation and localized injection of tissue kallikrein, bradykinin or B1 receptor agonist, followed by infusion of proteins by osmotic minipump. Regional blood flow was monitored weekly by laser Doppler perfusion imaging. Three weeks after surgery, rats receiving kallikrein and kinins showed a significant increase in the perfusion ratio of ischemic vs. normoperfused limb compared to control rats. Similarly, a microsphere assay showed that kallikrein and kinins significantly increased regional blood flow without altering blood pressure. Moreover, kallikrein and kinins significantly augmented capillary and arteriole densities, as quantified by immunostaining with CD-31 and smooth muscle alpha-actin. Both tissue kallikrein and bradykinin increased hemoglobin content in Matrigel implants in mice, providing further evidence of the angiogenic properties. Kinins, when delivered subcutaneously via Matrigel in rats, also increased regional perfusion. This is the first demonstration that local application of tissue kallikrein protein or kinin peptide has therapeutic value in the treatment of ischemic disease by promoting neovascularization.  相似文献   

17.
Previous studies have suggested that NMA or similar inhibitors of nitric oxide synthesis from L-arginine reverses or prevents the hypotension associated with endotoxin administration. We wanted to determine if vascular and cardiac responses to NMA support the idea that inhibitors of nitric oxide synthesis might be useful in the treatment of septic shock. Pentobarbital-anesthetized beagle dogs were administered endotoxin for 2 hours at a dose of 250 ng/kg/min. This resulted in reductions in systemic vascular resistance (34% decrease) and mean arterial pressure (25% decrease). Administration of NMA (30 mg/kg, IV) caused large and sustained increases in mean arterial pressure and systemic vascular resistance, and a large decrease in cardiac output and femoral arterial blood flow. Although NMA restored arterial pressure, the large and sustained fall in cardiac output suggests that the cardiovascular action of NMA is detrimental to dogs treated with endotoxin.  相似文献   

18.
Bradykinin produces pulmonary vasodilation and also stimulates production of other pulmonary vasodilators, including prostaglandin I2 (PGI2) and endothelial-derived relaxing factor. In 12 chronically instrumented fetal lambs, we therefore investigated potential mediation of the bradykinin response by PGI2 or other cyclooxygenase products. A 15-min infusion of bradykinin (approximately 1 microgram/kg estimated fetal wt/min) increased fetal pulmonary blood flow by 522% (P less than 0.05) and decreased pulmonary vascular resistance by 86% (P less than 0.05); plasma 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration also increased (P less than 0.05). After cyclooxygenase inhibition by indomethacin (3 mg), bradykinin increased pulmonary blood flow by only 350% (P less than 0.05) and decreased pulmonary vascular resistance by 83% (P less than 0.05); plasma 6-keto-PGF1 alpha concentrations did not increase. The increase in pulmonary blood flow produced by bradykinin was greater before administration of indomethacin than after (P less than 0.05). These studies demonstrate that bradykinin produces fetal pulmonary vasodilation by at least two mechanisms, one dependent on and the other independent of PGI2 production, the latter mechanism predominating.  相似文献   

19.
Sympathetic nervous system restraint of skeletal muscle blood flow during dynamic exercise has been well documented. However, whether sympathetic restraint of muscle blood flow persists and is constant throughout prolonged exercise has not been established. We hypothesized that both alpha1- and alpha2-adrenergic receptors would restrain skeletal muscle blood flow throughout prolonged constant-load exercise and that the restraint would increase as a function of exercise duration. Mongrel dogs were instrumented chronically with transit-time flow probes on the external iliac arteries and an indwelling catheter in a branch of the femoral artery. Flow-adjusted doses of selective alpha1- (prazosin) and alpha2-adrenergic receptor (rauwolscine) antagonists were infused after 5, 30, and 50 min of treadmill exercise at 3 and 6 miles/h. During mild-intensity exercise (3 miles/h), prazosin infusion resulted in a greater (P < 0.05) increase in vascular conductance (VC) after 5 [42% (SD 6)], compared with 30 [28% (SD 6)] and 50 [28% (SD 8)] min of running. In contrast, prazosin resulted in a similar increase in VC after 5 [29% (SD 10)], 30 [24% (SD 9)], and 50 [22% (SD 9)] min of moderate-intensity (6 miles/h) exercise. Rauwolscine infusion resulted in a greater (P < 0.05) increase in VC after 5 [39% (SD 14)] compared with 30 [26% (SD 9)] and 50 [22% (SD 4)] min of exercise at 3 miles/h. Rauwolscine infusion produced a similar increase in VC after 5 [19% (SD 3)], 30 [15% (SD 6)], and 50 [16% (SD 2)] min of exercise at 6 miles/h. These results suggest that the ability of alpha1- and alpha2-adrenergic receptors to produce vasoconstriction and restrain blood flow to active muscles may be influenced by both the intensity and duration of exercise.  相似文献   

20.
Various kinins (dissolved in 50 microliters) were applied to the nasal mucosa of healthy human volunteers to test the algesic and proinflammatory effects of these peptides in an intact human tissue. [des-Arg9]-bradykinin (0.5 mumol) was found to be inactive, while bradykinin (0.05-0.5 mumol) and especially kallidin (0.005-0.5 mumol) induced: (a) a mild painful sensation described as burning and pricking (latency 30 s, duration 3-5 min), (b) perception of pulsatility and obstruction in the nasal cavity (onset 1 min, duration 6-8 min). Substance P (0.5 mumol) and neurokinin A (0.5 mumol) produced slight obstruction and weak pulsatile sensation but not pain. Capsaicin (0.05 nmol) produced pain and secretion of fluid, but not pulsatile sensation. The effects of kallidin were not affected by repeated (to induce desensitization) applications of capsaicin (0.5 mumol). Likewise, ipratropium bromide (80 mg in 100 microliters) did not affect responses to kallidin. In an intact human tissue, kallidin produces various effects, including an algesic response, that are apparently independent from activation of B1 receptors and from desensitization of capsaicin-sensitive primary afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号