首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amplifier T cell activity can be transferred by spleen cells harvested 72 hr after priming with type III pneumococcal polysaccharide (SSS-III) and can be abolished by treating the transferred cells with monoclonal anti-Lyt-1, or anti-Thy-1 antibodies in the presence of complement; thus, amplifier cells represent a distinct subpopulation of T cells. Amplifier T cells were found to be sensitive to irradiation but not to treatment with cyclophosphamide. When amplifier cells were transferred to athymic nude (nu/nu) mice, the enhancement obtained was much greater than that produced in thymus-bearing (nu/+) mice; this is presumably due to the lack of suppressor T cell activity in nu/nu mice that enables amplifier T cell activity to be expressed more fully. Amplifier T cells also were found to be present in peripheral blood; these amplifier T cells were Lyt-2- in phenotype. Although the induction and activation of amplifier T cells appear to be antigen-specific, the product made by amplifier T cells may not be antigen specific in its mode of action. Because amplifier T cells can be induced and activated by exposure to immune B cells, specificity is presumably due in whole or in part to the ability of amplifier T cells to recognize the idiotypic determinants of B cell-associated antibody specific for SSS-III.  相似文献   

2.
Induced pluripotent stem cells (iPS cells) are somatic cells that have been reprogrammed to a pluripotent state by the introduction of specific factors. They can be generated from cells of different origins such as fibroblasts, keratinocytes, hepatocytes and blood. iPS cells are similar to embryonic stem cells in several aspects such as morphology, expression of pluripotency markers and the capacity to develop teratomas; tumors containing cells of the three germ layers. As pluripotent stem cells they can be differentiated into several lineages including neuronal, cardiac and blood cells. Recently, several groups have successfully generated patient-specific iPS cells from donors suffering different disorders and differentiated them into the cell type affected by the disease. These new human cell-based models cannot only be used to study the dynamics of diseases but also as systems to screen new drugs. Moreover, iPS cells promise to be good candidates for regenerative medicine.  相似文献   

3.
T cell-depleted, Sephadex G-10-passed unstimulated splenic B cells from C57BL/6 mice stimulated splenic T cells from CKB mice to produce IL 2 and to proliferate. The stimulatory ability of the unstimulated B cells was eliminated by 4000 rad irradiation of the unstimulated stimulator B cells. LPS-activated B cells could stimulate responder T cells more efficiently than unstimulated B cells. For further analysis of allostimulation by B cells, we established a series of alloreactive T cell hybridomas. Forty-five percent of these alloreactive T cell hybridomas could be stimulated to produce IL 2 by either macrophage-dendritic cells or unstimulated B cells. Fifty-five percent of these alloreactive T cell hybridomas could be stimulated by macrophage-dendritic cells but not by unstimulated B cells. T cell hybridomas that were not reactive with unstimulated B cells were also nonreactive to LPS-activated B cells. Analysis of two representative I-Ab-reactive T cell hybridoma clones, B cell-reactive clone CB-11.4 and B cell-nonreactive clone HTB-9.3, revealed again that the stimulatory ability of unstimulated B cells was sensitive to 4000 rad irradiation in the activation of CB-11.4 clone and that CB-11.4 could be stimulated more efficiently by LPS-activated B cells than by unstimulated B cells, but HTB-9.3 could not be stimulated by LPS-activated B cells. Thus, there may be two distinct types of T cells in the alloreaction: B-cell-reactive and B cell-nonreactive.  相似文献   

4.
Cell motility measurements with an automated microscope system   总被引:2,自引:0,他引:2  
The motility of 3T3 cells has been studied using a newly developed automated microscope system which is capable of recognizing live unstained cells growing in tissue culture. A large number of individual cells can be rapidly identified and characterized and their precise positions recorded. All cells can be revisited automatically every few minutes, and the new cell positions can be determined. Quantitative data from up to 1 000 cells can then be obtained, and cell movement parameters like cell speed, distance travelled, direction of movement, etc., can be measured for individual cells and for the whole cell population. In addition, for any number of chosen cells, high-resolution digitized images can be taken for further morphological studies, including acquisition of images of individual cells.  相似文献   

5.
The hindgut of cicadoid and cercopoid insects consists of a very long ileum and a relatively short rectum. The ileum is a single cell epithelium comprising several large primary cells between which are small secondary cells. Primary cells are packed with spherical mitochondria and the apical surface of the cells is extensively infolded to form leaflets, whilst the secondary cells are relatively unspecialized. An ATPase appears to be associated with the apical leaflets and small basal infoldings. These cells are presumed to be engaged in ion reabsorption and the formation of a hypoosmotic urine. It is suggested that apical leaflets may be a common feature of all cells concerned with ion reabsorption in the insect hindgut. The cells of the rectum do not appear to be specialized for either ion or water transport and the function of this organ appears to be urine storage.  相似文献   

6.

Background

For therapeutic usage of induced Pluripotent Stem (iPS) cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES) cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders.

Methodology/Principal Findings

This report demonstrates that human induced Pluripotent Stem (iPS) cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation.

Conclusions/Significance

These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.  相似文献   

7.
Mitotic cells could be well discriminated from the cells in the G1-, S- and G2-phases of the cell cycle using pulse labeling of S-phase cells with bromodeoxy-uridine (BrdUrd) and staining of the cells for incorporated BrdUrd and total DNA content. Unlabeled G2- and M-phase cells could be measured as two separate peaks according to propidium iodide fluorescence. M-phase cells showed lower propidium iodide fluorescence emission compared to G2-phase cells. The fluorescence difference of M- and G2-phase cells was caused by the different thermal denaturation of their DNA. Best separation of M- and G2-phase cells was obtained after 30-50 min heat treatment at 95 degrees C. Mitotic index could be measured if no unlabeled S-phase cells were present in the cell culture. With additional measurements of 90 degree scatter and/or forward scatter signals, mitotic cells could be clearly discriminated from both unlabeled G2- and S-phase cells. The correct discrimination (about 99%) of mitotic cells from interphase cells was verified by visual analysis of the nuclear morphology after selective sorting. Unlabeled and labeled mitotic cells could be observed as pulse-labeled cells progressed through the cell cycle. We conclude that this modified BrdUrd/DNA technique using prolonged thermal denaturation and the simultaneous measurement of scatter signals may offer additional information especially in the presence of BrdUrd-unlabeled S-phase cells.  相似文献   

8.
L T Yam 《Acta cytologica》1985,29(1):63-66
Malignant cells were detected in the pleural effusion of a patient with three separate primary malignancies. These cells were judged by conventional morphologic studies to be poorly differentiated cells, but cytochemical studies showed them to be granulocytic precursor cells. The use of cytochemical or immunochemical techniques may be most practical for the cytodiagnosis of malignant cells in serous effusions.  相似文献   

9.
It is well established that antigen-specific T lymphocytes can inhibit tumor growth in humans and in mice, leading to complete tumor elimination in some cases. However, in many cases T cell immunity is unable to successfully control tumor progression. Since tumors are derived from normal tissues, most antigens are shared with normal tissues, although expression levels are usually elevated in malignant cells. Nevertheless, low-level expression in normal cells can be sufficient to render autologous T cells tolerant and thus unable to mount effective immune responses against tumors. Here, we review how allogeneic T cells can be used to isolate T cells that effectively recognise and kill tumor cells, but not normal cells with low level of antigen expression. The TCR of allogeneic T cells can be introduced into patient T cells to equip them with anti-tumor specificity that may not be present in the autologous T cell repertoire.  相似文献   

10.
Thymic stromal cells are more efficient than similarly treated spleen cells for Ag presentation to Ag-specific, MHC-restricted T cell lines. Thymic stromal cells fail, however, to stimulate proliferation of autoreactive T cell lines. This failure to stimulate autoreactive T cells does not appear to be due to tolerance induction because thymic stroma does not interfere with subsequent stimulation by spleen cells. Moreover, the ability of thymic stromal cells to stimulate autoreactive T cells can be restored by addition of exogenous IL-1. This demonstrates that the specific self-determinants recognized by autoreactive T cells can be expressed on thymic stromal cells. Failure of stimulation by thymic stromal cells in the absence of exogenous IL-1 may reflect a difference in the physiologic requirements for activation of autoreactive T cells as compared to Ag-specific, MHC-restricted T cells.  相似文献   

11.
Populations of interleukin 3 (IL 3)-dependent cells can be derived from mouse bone marrow that display natural cytotoxicity (NC) against Wehi-164 target cells but do not display natural killing against YAC-1 cells. These bone marrow-derived NC cells cultured up to 2 mo in IL 3 do not contain rearranged T cell receptor beta-chain genes. They appear to be mast-like cells by electron microscopy and contain heterogeneous type granules. The molecules that mediate NC appear to be contained in these granules and are preformed because protein synthesis inhibitors have no effect on the capacity of IL 3-dependent NC cells to lyse Wehi-164 target cells. In addition to the IL 3-dependent bone marrow-derived cells, the basophilic leukemia cells, RBL-1, but not P815 mastocytoma cells were found to mediate NC against Wehi-164 cells. Both bone marrow-derived NC and RBL-1 cells can lyse L929 cells in 18 hr, suggesting that the putative NC mediator may be related to lymphotoxin/tumor necrosis factor (TNF). Recombinant human TNF displayed identical properties as NC cells; both entities possessed the same target cell specificity and had similar kinetics of target cell killing. The use of polyclonal rabbit antimouse TNF antibody blocked the actions of NC cells. Thus we believe that the mediation of NC is through the actions of a TNF-like molecule.  相似文献   

12.
Trophoblast HLA-C antigens from paternal origins, which liken the trophoblast to a semiallograft, could be presented by the maternal APCs to the specific maternal CD4+ T helper cells, which could release various cytokines in response to these alloantigens. On the basis of the cytokines produced, these cells can be classified in Th1, Th2 and Th17 cells. Th1 and Th17 cells, known to be responsible for acute allograft rejection, could be involved in miscarriage and Th2 cells together with regulatory CD4+ T cells, known to be involved in allograft tolerance, could be responsible, at least in part, for the success of pregnancy. In this review we focus the role effector CD4+ T cells Th1, Th2 and Th17 cells on the fetal allograft tolerance.  相似文献   

13.
Recent studies using stem cells or cancer stem cells have revealed the importance of detecting minor populations of cells in blood or tissue and analyzing their biological characteristics. The only possible method for carrying out such procedures is fluorescence activated cell sorting (FACS). However, FACS has the following limitations. First, cells without an appropriate cell surface marker cannot be sorted. Second, the cells have to be kept alive during the sorting process in order to analyze their biological characteristics. If an intracellular antigen that was specific to a particular cell type could be stained with a florescent dye and then the cells can be sorted without causing RNA degradation, a more simple and universal method for sorting and analyzing cells with a specific gene expression pattern could be established since the biological characteristics of the sorted cells could then be determined by analyzing their gene expression profile. In this study, we established a basic protocol for messenger RNA quantification after FACS (FACS-mQ) targeting intracellular antigens. This method can be used for the detection and analysis of stem cells or cancer stem cells in various tissues.  相似文献   

14.
B cells in patients with X-linked agammaglobulinemia   总被引:19,自引:0,他引:19  
X-linked agammaglobulinemia (XLA) has been described as a disorder in which pre-B cells fail to differentiate into B cells. However, a small number of B cells have been seen occasionally in patients with this disorder. Because the phenotype of these cells might be helpful in defining the site of the defect in XLA, immunofluorescent staining techniques were used to characterize the B cells that can be found in patients with XLA. Surface IgM-positive B cells could be detected in the peripheral circulation of all seven patients studied. These B cells constituted a very small percentage of the total lymphocytes (0.01 to 0.3% compared with 3.2 to 13.7% in controls) and differed in phenotype from control B cells. They were much more brightly stained for surface IgM (p less than 0.001) and less brightly stained for Ia (p less than 0.01). This phenotype is similar to that described for immature B cells in the mouse. Over 80% of the patients' B cells expressed surface IgD, and all expressed the B cell marker B1, but only 35% expressed the B cell marker B2. This B cell marker, which is the C3d receptor and the Epstein-Barr virus receptor, is expressed later in ontogeny than B1 and can be detected on over 80% of control B cells. All B cells expressed either kappa or lambda light chain. These findings indicate that the defect in differentiation of pre-B cells into B cells is not absolute in patients with XLA. The immature phenotype of the B cells additionally suggests that there may be a block in the maturation of B cells at more than one stage of differentiation in this disorder.  相似文献   

15.
Spleen cells from CBA/J or SJL mice sensitized with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) could be activated in vitro with MTg to transfer experimental autoimmune thyroiditis (EAT) to normal syngeneic recipients. EAT induced by these transferred cells was similar in incidence and severity to EAT induced by active immunization of mice with MTg and adjuvant and cells from EAT-resistant Balb/c mice could not be activated to induce EAT. The specific antigen MTg was required both for initial sensitization of the mice and for activation of spleen cells in vitro. The cells that were active in transferring EAT to mice were shown to be T cells. Removal of B cells from the cultured spleen cells had no effect on the ability of the cells to induce EAT.  相似文献   

16.
The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.  相似文献   

17.
For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.  相似文献   

18.
Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). Porcine EG cell lines with capacities of both in vitro and in vivo differentiation have been established. Because EG cells can be cultured indefinitely in an undifferentiated state, they may be more suitable for nuclear donor cells in nuclear transfer (NT) than somatic cells that have limited lifespan in primary culture. Use of EG cells could be particularly advantageous to provide an inexhaustible source of transgenic cells for NT. In this study the efficiencies of transgenesis and NT using porcine fetal fibroblasts and EG cells were compared. The rate of development to the blastocyst stage was significantly higher in EG cell NT than somatic cell NT (94 of 518, 18.2% vs. 72 of 501, 14.4%). To investigate if EG cells can be used for transgenesis in pigs, green fluorescent protein (GFP) gene was introduced into porcine EG cells. Nuclear transfer embryos using transfected EG cells gave rise to blastocysts (29 of 137, 21.2%) expressing GFP based on observation under fluorescence microscope. The results obtained from the present study suggest that EG cell NT may have advantages over somatic cell NT, and transgenic pigs may be produced using EG cells.  相似文献   

19.
Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression.  相似文献   

20.
The role of stem cells has long been known in reproductive organs and various tissues including the haematopoietic system and skin. During the last decade, stem cells have also been identified in other organs, including the nervous system, both during development and in post-natal life. More recently, evidence has been presented that stem cells thought to be responsible for the generation of mature differentiated cells of one organ, such as haematopoietic stem cells, may have the ability to also differentiate across lineages and contribute to tissues other than haematopoietic cells, including neuronal tissue, suggesting that easily accessible stem cells sources may one day be useful in the therapy of ischaemic (stroke) and also degenerative diseases of the nervous system. Here, we will evaluate the validity of such claims based on a number of criteria we believe need to be fulfilled to definitively conclude that certain stem cells can give rise to functional neural cells that might be suitable for therapy of neural disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号