首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of trapping and acceleration of nonmonoenergetic electron bunches by a wake wave excited by a laser pulse in a plasma channel is investigated. The electrons are injected into the vicinity of the maximum of the wakefield potential with a velocity lower than the wave phase velocity. The study is aimed at utilizing specific features of a wakefield with substantially overlapped focusing and accelerating phases for achieving monoenergetic electron acceleration. Conditions are found under which electrons in a finite-length nonmonoenergetic bunch are accelerated to high energies, while the energy spread between them is minimal. The effect of energy grouping of electrons makes it possible to obtain compact high-energy electron bunches with a small energy spread during laser plasma acceleration.  相似文献   

2.
The process of electron trapping by a wake wave excited by a laser pulse in a plasma channel in the case where the electron bunches are injected into the vicinity of the maximum of the wakefield potential at a velocity lower than the wave phase velocity is considered. The mechanism for the formation of a compact electron bunch in the trapping region when only the electrons of the injected bunch that are trapped in the focusing phase mainly undergo the subsequent acceleration in the wakefield is analyzed. The influence of the spatial dimensions of the injected bunch and its energy spread on the length of the trapped electron bunch and the fraction of trapped electrons is studied analytically and numerically. For electron bunches with different ratios of their spatial dimensions to the characteristic dimensions of the wake wave, the influence of the injection energy on the parameters of the high-energy electron bunch trapped and accelerated in the wake-field is studied.  相似文献   

3.
A study is made of a promising method for injecting an electron bunch into an accelerating laser-plasma system. A bunch is injected ahead of the front of a laser pulse generating a wake wave that propagates in a direction collinear with the pulse and has a velocity lower than the pulse group velocity. The influence of the initial nonmonoenergetic character of the bunch on its trapping and acceleration is investigated. By appropriately choosing the laser pulse parameters and the bunch injection energy, it is possible to create such conditions for the trapping of an initially nonmonoenergetic bunch by the wake wave that, over a certain acceleration distance, there will be no energy spread of the bunch due to its initial nonmonoenergetic character, a circumstance that allows compact electron bunches to be accelerated to high energies, with a minimum energy spread.  相似文献   

4.
The spatial structure of a wake wave excited in a low-density plasma by a laser pulse with a small focal spot radius is studied both analytically and numerically. Numerical study shows that, in a small-amplitude laser field, a wake wave breaks after the formation of an off-axis density maximum, which grows in height away from the pulse to become infinitely high after several periods. Analytical and numerical calculations show that the singularity in the density arises from the intersection of the trajectories of neighboring particles. Numerical simulations demonstrate that, as the laser field amplitude increases, the breaking point of the wake wave rapidly approaches the pulse trailing edge. For weakly nonlinear conditions, an analytic dependence of the coordinate of the breaking point on the amplitude and transverse size of the laser pulse is obtained.  相似文献   

5.
A set of equations describing large-angle stimulated Raman scattering (SRS) of a short, relativistically strong laser pulse propagating in an underdense plasma is derived and investigated numerically. It is shown that the SRS spectrum depends strongly on the pulse shape. If a pulse with a sharp leading edge excites a strongly nonlinear wake wave, the scattering occurs in relativistic electron flows and is accompanied by the Doppler frequency shift. When the electron flow is directed oppositely to the pulse propagation direction, the frequency upshift is maximum for the direct-backward SRS and decreases with decreasing scattering angle.  相似文献   

6.
Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during the first period of the plasma wave behind the pulse train.  相似文献   

7.
A study is made of the structure of the wakefield excited in the linear stage of the self-modulation of a high-power laser pulse in a homogeneous underdense plasma. It is shown that the fronts of the wake wave are curved and the profile of the wakefield amplitude differs strongly from the intensity profile of the laser pulse. The diffraction effects are found to play a key role in the formation of the transverse profile of the wakefield.  相似文献   

8.
The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.  相似文献   

9.
The properties of a nonlinear plasma wake wave excited by an axially symmetric relativistic electron bunch are studied. It is shown that the nonlinear dependence of the wake wavelength on the transverse coordinate leads to distortion of the phase front of the wake wave and to steepening and oscillations of the transverse profile of the wakefield. The magnetic field of the wake wave is nonzero and oscillates at a frequency higher than the plasma electron frequency. Because of nonlinearity, the amplitude of the excited wake wave changes with distance from the bunch. The increase in nonlinearity leads to the development of turbulence and chaotization of the wakefield and results in the switching-on of the thermal effects and plasma heating.  相似文献   

10.
Generation of terahertz waves by hot dense plasma under the action of a femtosecond laser pulse in the regime of anomalous skin effect is considered. The spectral, angular, and energy characteristics of terahertz waves are studied as functions of the plasma and laser parameters. It is shown that, under the conditions of anomalous skin effect, which takes place in ultradense hot plasma, the total energy of the terahertz signal is independent of the electron density, proportional to the square of the electron temperature, and maximal at tight focusing of the laser pulse.  相似文献   

11.
A study is made of the interaction (“collision”) between two identical laser pulses with lengths much shorter than the diffraction length, propagating in a plasma toward one another. It is shown that the plasma response to the pulses depends essentially on the value of the parameter ωpτ, where ωp is the plasma frequency and τ is the pulse duration. Short laser pulses (such that \(\omega _p \tau \leqslant \sqrt 2 \)) efficiently generate plasma waves on two characteristic scale lengths. Large-scale wake waves with a wavelength of about cp are generated over the entire path of the pulses and form a two-dimensional standing plasma wave in the region between the pulses after their interaction. In the interaction region, the pulses excite small-scale plasma oscillations with a wavelength equal to half the laser wavelength, which remain in the plasma after the interaction. Long laser pulses (such that \(\omega _p \tau \leqslant \sqrt 2 \)) also generate quasistatic plasma perturbations on two scale lengths. Perturbations generated on large scales of about the pulse length accompany the propagating pulses and are somewhat amplified in the interaction between them. Small-scale plasma fields are generated only during the interaction between the pulses, and they disappear after the interaction. The influence of the generation of plasma fields on the energy of the laser pulses and on their shape, as well as the possible applications of the effects under consideration, is discussed.  相似文献   

12.
The excitation of a wake wave by a relativistic electron beam in an unbounded magnetized plasma and a plasma waveguide is studied theoretically. It is shown that, in a waveguide partially filled with a plasma, the energy that the electrons of the accelerated beam can gain is 37 times higher than the energy of the electrons of the beam generating wakefield.  相似文献   

13.
The generation of low-frequency (terahertz) electromagnetic radiation in the reflection of a laser pulse from the boundary of a dense plasma is considered. Low-frequency wave electromagnetic fields in vacuum are excited by a vortex electric current that is induced at the plasma boundary by the ponderomotive force of the laser pulse. The spectral, angular, and energy parameters of the low-frequency radiation, as well as the spatiotemporal structure of the emitted waves, are investigated. It is shown that for typical parameters of present-day laser plasma experiments, the power of terahertz radiation can amount to tens of megawatts.  相似文献   

14.
Results are presented from a theoretical investigation of the acceleration of test electrons by a Langmuir wave excited by a short laser pulse at half the electron plasma frequency. Such a pulse penetrates into the plasma over a distance equal to the skin depth and efficiently excites Langmuir waves in the resonant interaction at the second harmonic of the laser frequency. It is shown that the beam of electrons accelerated by these waves is modulated into a train of electron bunches, but because of the initial thermal spread of the accelerated electrons, the bunches widen and begin to overlap, with the result that, at large distances, the electron beam becomes unmodulated.  相似文献   

15.
General features of the absorption and reflection of a test wave by a nonequilibrium plasma produced in the tunneling ionization of atoms of a matter by a circularly polarized laser pulse are described. Because of the highly anisotropic distribution of photoelectrons, the optical properties of a nonequilibrium plasma differ considerably from those of a plasma with a Maxwellian electron velocity distribution. Physically, an anomalous behavior of the absorption coefficient and of the phase shift stems from the fact that electron kinetics in the skin layer is modified by the alternating magnetic field of the test wave.  相似文献   

16.
A study is made of the excitation of wake waves by a one-dimensional electron bunch in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by Maxwell's equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of parameter values of the bunch, pump wave, and plasma, the excitation is resonant in character and the amplitude of the excited wake waves increases with distance from the bunch.  相似文献   

17.
The mechanism of stochastic electron acceleration and heating by a picosecond laser pulse in underdense plasma is studied using particle-in-cell simulations and theoretical models. The formation of wide electron energy spectra in the simultaneously acting laser and plasma fields is analyzed. It is shown that electron scattering by turbulent plasma fluctuations excited through stimulated forward Raman scattering plays a governing role in the formation of high-energy tails in the electron distribution function.  相似文献   

18.
A theory is presented of the generation of low-frequency transition radiation by a short laser pulse at a plasma-vacuum interface. The wave electromagnetic fields are excited by the vortex electric current that is generated at the plasma boundary by the ponderomotive force of the laser field. The spectral, angular, and energy parameters of the transition radiation, as well as the spatiotemporal structure of the emitted waves in vacuum and in plasma, are investigated. It is shown that the parameters of the transition radiation depend essentially on the ratio of the laser pulse duration to the plasma oscillation period. Under conditions typical of present-day laser-plasma experiments, the transition electromagnetic radiation is generated in the terahertz frequency range and its power can reach several megawatts.  相似文献   

19.
It is shown that a short laser pulse propagating in a plasma with electron density fluctuations can emit electromagnetic waves with frequencies much lower than the laser carrier frequency. Emissions with frequencies close to the plasma frequency and the doubled plasma frequency in a nonisothermal plasma, as well as emission generated in a turbulent plasma, are examined. The effects in question are related to the transformation of the laser pulse wakefield into electromagnetic radiation by electron density fluctuations. The phenomenon under study opens new possibilities for diagnostics of both plasma fields excited by laser pulses and electron density fluctuations in a plasma.  相似文献   

20.
A study is made of the excitation of wake waves by a one-dimensional bunch of charged particles in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by the Maxwell equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of the parameter values of the bunch, pump wave, and plasma, the amplitude of the excited transverse waves grows as the energy of the bunch particles increases until the relativistic factor of the bunch reaches a certain threshold value above which the transverse wave amplitude becomes essentially independent of the bunch particle energy and grows as the intensity and frequency of the pump wave increase. The amplitude and wavelength of the longitudinal field, which is shown to depend weakly on the energy of the bunch particles, grows with increasing the pump wave intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号