共查询到20条相似文献,搜索用时 0 毫秒
1.
Commercial non-chitinase enzymes from Aspergilus niger, Acremonium cellulolyticus and Trichoderma viride were investigated for potential utilization in the preparation of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine, GlcNAc) from chitin. Among the tested enzymes, cellulase A. cellulolyticus exhibited highest chitinolytic activity per weight toward amorphous chitin and beta-chitin from squid pen. The optimum pH of the enzyme was 3 where it produced two major hydrolytic products, GlcNAc and N,N'-diacetylchitobiose ([GlcNAc](2)). The product ratio, GlcNAc:[GlcNAc](2), increased while the total yield decreased as the pH was raised from 3. All of the [GlcNAc](2) produced at pH 3 can be converted in situ to GlcNAc by mixing cellulase A. cellulolyticus with one of several other enzymes from A. niger resulting in a higher yield of GlcNAc. An appropriate mixing ratio of cellulase A. cellulolyticus to another enzyme was 9:1 (w/w) and an optimum substrate concentration was 20 mg/mL. 相似文献
2.
Glycosylation of allyl 2-acetamido-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside with bulky substituted glycosyl donors leads to the formation of derivatives of the disaccharide alpha-D-Glc-(1-->3)-d-GlcNAc with different yields. 相似文献
3.
High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan 总被引:2,自引:0,他引:2
Roncal T Oviedo A López de Armentia I Fernández L Villarán MC 《Carbohydrate research》2007,342(18):2750-2756
The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h. 相似文献
4.
2-Acetamido-2-deoxy-d-galactose (d-GalNAc) is an important monosaccharide widely distributed in nature. However, unlike its 4-epimer, the 2-acetamido-2-deoxy-d-glucose (d-GlcNAc), d-GalNAc is very expensive to obtain from commercial sources. Herein we report an efficient transformation that allows for the conversion of d-GlcNAc to a d-GalNAc derivative 7 in three steps and in 58.4-75% overall yields. The process was carried out on a greater than 20-g scale without the need of chromatography. The versatility of compound 7 was demonstrated by the synthesis of several useful monosaccharides and thiodisaccharides containing a d-GalNAc residue. 相似文献
5.
A novel synthesis of furanodictines A [2-acetamido-3,6-anhydro-2-deoxy-5-O-isovaleryl-d-glucofuranose (1)] and B [2-acetamido-3,6-anhydro-2-deoxy-5-O-isovaleryl-d-mannofuranose (2)] is described starting from 2-acetamido-2-deoxy-d-glucose (GlcNAc). The synthetic protocol is based on deriving the epimeric bicyclic 3,6-anhydro sugars [2-acetamido-3,6-anhydro-2-deoxy-d-glucofuranose (4) and 2-acetamido-3,6-anhydro-2-deoxy-d-mannofuranose (5)] from GlcNAc. Reaction with borate upon heating led to a facile transformation of GlcNAc into the desired epimeric 3,6-anhydro sugars. The C5 hydroxyl group of the 3,6-anhydro compounds 4 and 5 was regioselectively esterified with the isovaleryl chloride to complete the synthesis of furanodictines A and B, respectively. The targets 1 and 2 were synthesized in only two steps requiring no protection/deprotection. 相似文献
6.
Allyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-formyl-alpha-D-glucopyranoside, N-acetyl-2,3,4-tri-O-acetyl-L-fucopyranosylamine and products of O-acetyl group migration were found as side products during glycosidation of selected 2-acetamido-2-deoxy-D-glucopyranosides. 相似文献
7.
Perepelov AV Torzewska A Shashkov AS Ziolkowski A Senchenkova SN Rozalski A Knirel YA 《Carbohydrate research》2002,337(24):2463-2468
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15. 相似文献
8.
Sola-Carvajal A Sánchez-Carrón G García-García MI García-Carmona F Sánchez-Ferrer Á 《Biochimie》2012,94(1):222-230
N-Acyl-d-Glucosamine 2-epimerase (AGE) catalyzes the reversible epimerization between N-acetyl-d-mannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc). Bacteroides ovatus ATCC 8483 shows 3 putative genes for AGE activity (BACOVA_00274, BACOVA_01795 and BACOVA_01816). The BACOVA_00274 gene encodes an AGE (BoAGE1) with strong similarity to the AGE previously characterized in Bacteroides fragilis. Interestingly, the BACOVA_01816 gene (BoAGE2) shares 57% identity with Anabaena sp. CH1 AGE, but has an extra 27-amino acid tag sequence in the N-terminal. When cloned and expressed in Escherichia coli Rosetta (DE3)pLys, BACOVA_01816 was able to convert ManNAc into GlcNAc and vice versa. It was stable over a broad range of pHs and its activity was enhanced by ATP (20 μM). The incubation with ATP stabilized its structure, raising its melting temperature by about 8 °C. In addition, the catalytic efficiency for ManNAc synthesis was higher than that for GlcNAc synthesis. These characteristics make BoAGE2 a promising biocatalyst for sialic acid production using cheap GlcNAc as starting material. BoAGE2 could be considered a Renin-binding Protein and its interaction with renin was studied for the first time in a prokaryotic AGE. Surprisingly, renin activated BoAGE2, an effect which is contrary to that described for mammalian AGE and unrelated with the unique N-terminal tag, since a mutant without this tag was also activated by renin. When BoAGE2 sequence was compared with other related (real and putative) AGE described in the databases, it was seen that AGE enzymes can be divided in 3 different groups. The relationship between these groups is also discussed. 相似文献
9.
Nakakita S Sumiyoshi W Miyanishi N Hirabayashi J 《Biochemical and biophysical research communications》2007,362(3):639-645
Hydrazinolysis is a versatile method to liberate N-linked glycans from glycoproteins. However, the method is usually performed with anhydrous hydrazine, a highly toxic and explosive chemical used in rocket fuel. Thus despite the need to produce functionally important glyco-materials, hydrazinolysis is limited to small scale (e.g., 0.2-1 mL) reactions. In the present study, we report an alternative procedure for hydrazinolysis using hydrazine monohydrate in place of anhydrous hydrazine. The developed procedure was applied to both purified glycoproteins (Taka-amylase and transferrin) and hen egg yolk protein fraction with comparable yields to the traditional method using anhydrous hydrazine. The sialyl linkage of alpha2-6disialobiantennary oligosaccharides proved to be fully stable. The developed procedure facilitated the large-scale preparation of N-linked glycans. The new method should make a substantial contribution to both small- and large-scale production of functional glycans, including therapeutically relevant human-type glycans. 相似文献
10.
N-Acetyl-D-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell-surface NeuNAc using chemically modified D-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of D-mannosamine were prepared, and their accessibility to NeuNAc aldolase was quantitatively investigated. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl-, and N-phenylacetyl-D-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-D-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of D-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl-, and N-phenylacetyl-D-mannosamines may be employed to bioengineer NeuNAc on cells. 相似文献
11.
2-Acetamido-2-deoxy-D-glucose hydrochloride (D-glucosamine hydrochloride) has been used for the preparation of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-trifluoroacetamido-beta- (4) and 2-tetrachlorophthalimido-alpha,beta-D-glucopyranose (6), which have been transformed into the appropriate bromides and the chloride. Both bromo and chloro sugars were used as a glycosyl donors for the glycosylation of diosgenin [(25R)-spirost-5-en-3beta-ol]. These condensations were conducted under mild conditions, using silver triflate as a promoter, and gave diosgenyl glycosides 9 and 12. Each of them was converted into diosgenyl 2-amino-2-deoxy-beta-D-glucopyranoside hydrochloride (11) and N-acylamido derivatives. The structures of all new glycosides were established by 1H and 13C NMR spectroscopy. These diosgenyl glycosides are the first saponins containing the D-glucosamine residue that have been synthesized. These compounds show promising antitumor activities. The synthetic saponins increase the number of apoptotic B cells, in combination with cladribine (2-CdA), that are isolated from chronic lymphotic leukemia (B-CLL) patients. 相似文献
12.
Synthesis of new sugar amino acid derivatives of D-glucosamine 总被引:1,自引:0,他引:1
Xie J 《Carbohydrate research》2003,338(5):399-406
The synthesis of several new sugar amino acid derivatives of 2-acetamido-2-deoxy-D-glucose, bearing a C-glycosyl functionality as building blocks for the design and synthesis of natural glycoconjugates mimetics, is described. These compounds were prepared from the readily accessible per-benzylated amino C-allyl glucopyranosyl compounds, with TMSOTf/Ac(2)O-mediated selective acetolysis of the 6-O-benzyl group as the key step. 相似文献
13.
Nordmark EL Perepelov AV Shashkov AS Nazarenko EL Gorshkova RP Ivanova EP Widmalm G 《Carbohydrate research》2005,340(8):1483-1487
The structure of an acidic polysaccharide from Pseudoalteromonas aliena type strain KMM 3562(T) has been elucidated. The polysaccharide was studied by component analysis, (1)H and (13)C NMR spectroscopy, including 2D NMR experiments. A (1)H, (13)C band-selective constant-time heteronuclear multiple-bond connectivity experiment was used to determine amide linkages, between serine and uronic acid (UA) residues, via (3)J(H,C) correlations between Ser-alphaH and UA-C-6. It was found that the polysaccharide consists of pentasaccharide repeating units with the following structure: [carbohydrate structure]; see text. 相似文献
14.
Céline Falentin-Daudre 《Carbohydrate research》2010,345(14):1983-1987
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield. 相似文献
15.
16.
5-Thio-D-arabinopyranose (5) and 5-thio-D-xylopyranose (10) were synthesized from the corresponding D-pentono-1,4-lactones. After regioselective bromination at C-5, transformation into 5-S-acetyl-5-thio derivatives, reduction into lactols and deprotection afforded the title compounds in 49 and 42% overall yield, respectively. 相似文献
17.
3-Acetamido-5-amino-3,5,6-trideoxy-d-glucono-1,5-lactam and 3-acetamido-5-amino-3,5-dideoxy-d-glucono-1,5-lactam were synthesized from corresponding 3-acetamido-3-deoxy-β-d-glucopyranosides in 63% and 35% overall yield, respectively. Acetylation followed by reduction led to the title 3-acetamido-3-deoxy derivatives of both deoxynojirimycin and 1,6-dideoxynojirimycin. The procedure developed is useful for a multi-gram scale. 相似文献
18.
Yoshida H Yamada M Nishitani T Takada G Izumori K Kamitori S 《Journal of molecular biology》2007,374(2):443-453
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246. 相似文献
19.
5-Thio-D-ribopyranose was synthesized from D-ribono-1,4-lactone (1) by two approaches: (i) 5-bromo-5-deoxy-D-ribono-1,4-lactone (2) was successively transformed into 5-bromo-5-deoxy, 5-S-acetyl-5-thio or 5-thiocyanato-D-ribofuranose derivatives; appropriate treatment then lead to 5-thio-D-ribopyranose (7) in 46-48% overall yield and; (ii) 2 was transformed into the 5-S-acetyl-5-thio-D-ribono-1,4-lactone derivative (11). Reduction and deprotection of 11 afforded 5-thio-D-ribopyranose (7) in 57% overall yield. 相似文献
20.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α6/α6-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α6/α6-barrel. 相似文献