首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Export of unspliced mRNA to the cytoplasm is required for the replication of all retroviruses. In simian type D retroviruses, the RNA export is mediated by the constitutive transport element (CTE) that binds the cellular nuclear export factor 1, NXF1(TAP). To search for potential cellular RNA substrates for NXF1, we have set up an in vitro selection procedure, using an RNA library expressed from total human genomic DNA. A sequence that was isolated most frequently as independent clones exhibits extensive homology to the 3' untranslated region of expressed LINE1 (L1) retrotransposons. This region, termed L1-NXF1 binding element (L1-NBE) bears no structural resemblance to the viral CTE, but binds NXF1 as strongly as CTE, based on gel mobility shift competition assays. A deletion analysis of the NXF1 protein reveals that CTE and L1-NBE have different, but overlapping, binding domains on NXF1. Placed in an intron, L1-NBE is capable of mediating nuclear export of lariat RNA species in Xenopus laevis oocytes and of an unspliced HIV-1 derived RNA in human 293 cells, suggesting that it may function as a nuclear export element for the intronless L1 mRNA.  相似文献   

2.
The normal expression of human beta globin is critically dependent upon the constitutively high stability of its encoding mRNA. Unlike with alpha-globin mRNA, the specific cis-acting determinants and trans-acting factors that participate in stabilizing beta-globin mRNA are poorly described. The current work uses a linker-scanning strategy to identify a previously unknown determinant of mRNA stability within the beta-globin 3' untranslated region (3'UTR). The new determinant is positioned on an mRNA half-stem opposite a pyrimidine-rich sequence targeted by alphaCP/hnRNP-E, a factor that plays a critical role in stabilizing human alpha-globin mRNA. Mutations within the new determinant destabilize beta-globin mRNA in intact cells while also ablating its 3'UTR-specific interaction with the polyfunctional RNA-binding factor nucleolin. We speculate that 3'UTR-bound nucleolin enhances mRNA stability by optimizing alphaCP access to its functional binding site. This model is favored by in vitro evidence that alphaCP binding is enhanced both by cis-acting stem-destabilizing mutations and by the trans-acting effects of supplemental nucleolin. These studies suggest a mechanism for beta-globin mRNA stability that is related to, but distinct from, the mechanism that stabilizes human alpha-globin mRNA.  相似文献   

3.
4.
5.
The levels of high molecular weight isoforms of tropomyosin (TM) are markedly reduced in ras-transformed cells. Previous studies have demonstrated that the forced expression of tropomyosin-1 (TM-1) induces reversion of the transformed phenotype of ras-transformed fibroblasts. The effects of the related isoform TM-2 on transformation are less clear. To assess the effects of forced expression of the TM-2 protein on ras-induced tumorigenicity, we introduced a TM-2 cDNA lacking the 3' untranslated region riboregulator into ras-transformed NIH 3T3 fibroblasts. TM-2 expression resulted in a flatter cell morphology and restoration of stress fibers. TM-2 expression also significantly reduced growth rates in low serum, soft agar, and nude mice. The reduced growth rates were associated with a prolongation of G0-G1. To identify the mechanism of TM-2-induced growth inhibition, we analyzed the effects of TM-2 reexpression of ERK and c-jun N-terminal kinase (JNK) activities. Levels of ERK phosphorylation and activity in TM-2-transfected tumor cells were comparable to those in mock-transfected tumor cells. JNK activity was only modestly increased in ras-transformed cells relative to untransformed NIH 3T3 cells and only slightly reduced as result of forced TM-2 expression. We conclude that the partially restored expression of the TM-2 protein induces growth inhibition of ras-transformed NIH 3T3 cells without influencing ERK or JNK activities. Furthermore, the 3' untranslated region riboregulator of the alpha-tropomyosin gene is not needed for the inhibition of ras-induced growth.  相似文献   

6.
7.
8.
9.
Barley yellow dwarf virus RNA lacks both a 5' cap and a poly(A) tail, yet it is translated efficiently. It contains a cap-independent translation element (TE), located in the 3' UTR, that confers efficient translation initiation at the AUG closest to the 5' end of the mRNA. We propose that the TE must both recruit ribosomes and facilitate 3'-5' communication. To dissect its function, we determined the secondary structure of the TE and roles of domains within it. Nuclease probing and structure-directed mutagenesis revealed that the 105-nt TE (TE105) forms a cruciform secondary structure containing four helices connected by single-stranded regions. TE105 can function in either UTR in wheat germ translation extracts. A longer viral sequence (at most 869 nt) is required for full cap-independent translation in plant cells. However, substantial translation of uncapped mRNAs can be obtained in plant cells with TE105 combined with a poly(A) tail. All secondary structural elements and most primary sequences that were mutated are required for cap-independent translation in the 3' and 5' UTR contexts. A seven-base loop sequence was needed only in the 3' UTR context. Thus, this loop sequence may be involved only in communication between the UTRs and not directly in recruiting translational machinery. This structural and functional analysis provides a framework for understanding an emerging class of cap-independent translation elements distinguished by their location in the 3' UTR.  相似文献   

10.
11.
BACKGROUND INFORMATION: Maskin is a member of the TACC (transforming acidic coiled-coil) domain proteins found in Xenopus laevis oocytes and embryos. It has been implicated in the co-ordination of the spindle and has been reported to mediate translational repression of cyclin B1 mRNA. RESULTS: In the present study, we report that maskin mRNA is translationally repressed at the level of initiation in stage 4 oocytes and becomes activated in stage 6 oocytes. The translational repression of maskin mRNA correlates with the presence of a short poly(A) tail on this mRNA in stage 4 oocytes. The 3'-UTR (untranslated region) of maskin can confer the translational regulation to a reporter mRNA, and so can the 3'-UTR of human TACC3. A conserved GUCU repeat element was found to repress translation in both stage 4 and stage 6 oocytes, but deletion of this element did not abrogate repression in stage 4 oocytes. UV cross-linking experiments indicated that overlapping sets of proteins bind efficiently to both the maskin and the cyclin B1 3'-UTRs. As reported previously, CPEB [CPE (cytoplasmic polyadenylation element)-binding protein] binds to the cyclin B1 3'-UTR, but its binding to the maskin 3'-UTR is minimal. By RNA affinity chromatography and MS, we identified the EDEN-BP [EDEN (embryonic deadenylation element)-binding protein] as one of the proteins binding to both the maskin and the cyclin B1 3'-UTRs. CONCLUSIONS: Maskin mRNA is translationally regulated by at least two repressor elements and an activation element. One of the repessor elements is the evolutionarily conserved GUCU repeat. EDEN-BP binds to both the maskin and cyclin B1 3'-UTRs, indicating it may be involved in the deadenylation of these mRNAs.  相似文献   

12.
13.
14.
15.
16.
Shen R  Miller WA 《Journal of virology》2004,78(9):4655-4664
RNAs of many viruses are translated efficiently in the absence of a 5' cap structure. The tobacco necrosis virus (TNV) genome is an uncapped, nonpolyadenylated RNA whose translation mechanism has not been well investigated. Computational analysis predicted a cap-independent translation element (TE) within the 3' untranslated region (3' UTR) of TNV RNA that resembles the TE of barley yellow dwarf virus (BYDV), a luteovirus. Here we report that such a TE does indeed exist in the 3' UTR of TNV strain D. Like the BYDV TE, the TNV TE (i) functions both in vitro and in vivo, (ii) requires additional sequence for cap-independent translation in vivo, (iii) has a similar secondary structure and the conserved sequence CGGAUCCUGGGAAACAGG, (iv) is inactivated by a four-base duplication in this conserved sequence, (v) can function in the 5' UTR, and (vi) when located in its natural 3' location, may form long-distance base pairing with the viral 5' UTR that is conserved and probably required. The TNV TE differs from the BYDV TE by having only three helical domains instead of four. Similar structures were found in all members of the Necrovirus genus of the Tombusviridae family, except satellite tobacco necrosis virus, which harbors a different 3' cap-independent translation domain. The presence of the BYDV-like TE in select genera of different families indicates that phylogenetic distribution of TEs does not follow standard viral taxonomic relationships. We propose a new class of cap-independent TE called BYDV-like TE.  相似文献   

17.
18.
The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3′ end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Ψ3) within the 3′-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Ψ3 and a second pseudoknot (Ψ2) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Ψ3 and a pseudoknot that connects H5 and the 3′ end (Ψ1). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3′ end, and subsets containing Ψ3, H4a, and H4b or Ψ3, H4a, H4b, H5, and Ψ2, form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Ψ3, and Ψ2 are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3′ untranslated region sequences such as translation and replication.  相似文献   

19.
Several functions have been attributed to protein binding within the 3'untranslated region (3'UTR) of mRNA, including mRNA localization, stability, and translational repression. Vimentin is an intermediate filament protein whose 3'untranslated sequence is highly conserved between species. In order to identify sequences that might play a role in vimentin mRNA function, we synthesized32P-labeled RNA from different regions of vimentin's 3'UTR and assayed for protein binding with HeLa extracts using band shift assays. Sequences required for binding are contained within a region 61-114 nucleotides downstream of the stop codon, a region which is highly conserved from Xenopus to man. As judged by competition assays, binding is specific. Solution probing studies of 32P-labeled RNA with various nucleases and lead support a complex stem and loop structure for this region. Finally, UV cross-linking of the RNA-protein complex identifies an RNA binding protein of 46 kDa. Fractionation of a HeLa extract on a sizing column suggests that in addition to the 46 kDa protein, larger complexes containing additional protein(s) can be identified. Vimentin mRNA has been shown to be localized to the perinuclear region of the cytoplasm, possibly at sites of intermediate filament assembly. To date, all sequences required for localization of various mRNAs have been confined to the 3'UTR. Therefore, we hypothesize that this region and associated protein(s) might be important for vimentin mRNA function such as in localization.  相似文献   

20.
R C Levitt 《Genomics》1991,11(2):484-489
In this review we present preliminary evidence for a new class of polymorphism that may be used in a systematic way to map cDNAs efficiently and to expedite the construction of a high-resolution genetic map of the human genome. Ultimately, transcribed 3' untranslated polymorphisms will warrant further study because they should be widely distributed throughout the genome within transcribed sequences, and they can be readily identified as a result of cDNA cloning and sequencing. Furthermore, these markers should be universally available on the basis of the sequence data and highly useful in linkage analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号