首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) on the induction of 6-thioguanine (6TG)-resistant mutants and chromosome aberrations were examined in Chinese hamster V79 cells. Cells were simultaneously treated with EMS at a concentration of D20 and MMS at various concentrations for 3, 6 or 9 h. In other experiments cells were simultaneously treated with MMS at a concentration of D20 and EMS at various concentrations for 3, 6 or 9 h. The mathematical analysis of the combined effects of both chemicals for cell killing (cytotoxicity) and 6TG-resistant mutations indicates that synergistic interactions were observed for both cell killing and mutations induced by MMS and EMS. The frequency of chromosome aberrations induced by simultaneous treatment with MMS at a concentration of D20 and EMS at various concentrations for 3 h was additive. However, the frequency of chromosome aberrations induced by EMS at a concentration of D20 and MMS at various concentrations for 3 h was not significantly different from those induced by MMS alone.  相似文献   

2.
Effects of vanillin on the induction of sister-chromatid exchanges (SCEs) and structural chromosome aberrations by mitomycin C (MMC) were investigated in cultured Chinese hamster ovary cells. Vanillin induced neither SCEs nor chromosome aberrations by itself. However, an obvious increase in the frequency of SCEs was observed when MMC-treated cells were cultured in the presence of vanillin. The effect of vanillin was S-phase-dependent. On the contrary, the frequency of cells with chromosome aberrations was significantly decreased by the post-treatment with vanillin at G2 phase.  相似文献   

3.
The effects of L-ascorbic acid (AsA) on the mutations induced by ethyl methanesulfonate (EMS) were examined by means of the 6-thioguanine (6TG)-resistant mutation assay and chromosome aberration assay in cultured Chinese hamster V79 cells. When cells were treated with EMS at various concentrations in the presence of 100 micrograms/ml AsA, EMS-induced 6TG-resistant mutations were reduced about one third or one fourth. EMS-induced chromosome aberrations were also reduced by AsA. These reductions in the mutagenicity of EMS were also found when cells were treated with mixtures of AsA and EMS which had previously been incubated at 37.0 degrees C for 2 h. In pre- and post-treatments with AsA, however, the frequencies of EMS-induced mutations were not reduced, but rather increased markedly.  相似文献   

4.
Effects of antimutagenic flavourings such as vanillin, ethylvanillin, anisaldehyde, cinnamaldehyde, coumarin and umbelliferone on the induction of SCEs by MMC were investigated in cultured Chinese hamster ovary cells. None of these 6 flavourings showed any SCE-inducing activity by themselves. However, an obvious increase in the frequencies of SCEs was observed when MMC-pretreated cells were cultured in the presence of each flavouring. All these compounds have either an alpha, beta-unsaturated carbonyl group or a carbonyl functionality neighbouring the phenyl group which may react with an enzyme SH-group and cause higher-order structure changes. SCE-enhancing effects of vanillin were further investigated on 6 other kinds of mutagens. Vanillin was also effective on SCEs induced by EMS, ENNG, ENU or MNU. On the other hand, MMS- or MNNG-induced SCEs were not influenced at all by vanillin. SCE-enhancing effects of vanillin seemed to be dependent on the quality of lesions in DNA.  相似文献   

5.
Chromosome aberrations induced by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavoring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G2 phase suppressed UV- and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. These G1- and G2-dependent anticlastogenic effects were not observed in the presence of 2',3'-dideoxythymidine, an inhibitor of DNA polymerase beta. Based on these results, the anticlastogenic effect of vanillin was considered to be due to the promotion of the DNA rejoining process in which DNA polymerase beta acts.  相似文献   

6.
Recently we shown that low doses (0.12-0.46 Gy) of (methyl-3H)-thymidine incorporated into human endothelial cells induce the accumulation cells in G2-phase of the cell cycle. The temperate doses of (1-6 Gy) gamma-rays 137Cs were less effective in the induction of the G2-block estimated by flow cytometry analysis of DNA content and in the induction of the chromosome aberrations (bridges and fragments in anaphase). The aim of this study was the comparative investigation of efficiency of beta-rays emitted 3H from 3H-thymidine and 3H2O by several of the cellular parameters. Here we shown that at the equal conditions of the incubation of the cells in medium with 3H2O induced the accumulation cells in S-phase without decreasing of the mitotic activity and without increasing of the chromosome aberrations level. Unlike from 3H2O the incubation of the cells with 3H-thymidine induced the accumulation cells in G2-phase with decrease of the mitotic activity and with increase of the chromosome aberrations level. Concurrent treatment cells with 3H-thymidine and thymidine abrogate these cellular effects of the 3H-thymidine. Inhibitor ATM-kinase caffeine abrogate as G2-block as S-phase block. These results suggest that the low-dose beta-radiation activates S-phase and G2-phase checkpoints requiring ATM-mediated signal transduction pathway. The factors, which impact on the efficiency of the internal and of the external sources of the irradiation, depend on theirs disposition in relation to radiosensitive target--DNA was discussed.  相似文献   

7.
Induction of micronuclei by mitomycin C (MMC) in mouse bone marrow cells was suppressed by post-treatment with vanillin, a component of vanilla essence flavour. Vanillin was given orally to mice 7.5 h after intraperitoneal injection of 2 mg/kg MMC. Post-treatment with vanillin at 500 mg/kg caused about 50% decrease in the frequency of micronucleated polychromatic erythrocytes (MN-PCEs). The effect of vanillin administration on the time-course of formation of MN-PCEs was also investigated. The suppressing effect was not due to a delay in the formation of MN-PCEs by the cytotoxic action of vanillin. Vanillin acts as an anticlastogenic factor in vivo.  相似文献   

8.
Kuroda Y  Shima N  Yazawa K  Kaji K 《Mutation research》2001,497(1-2):123-130
The antimutagenic activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were examined by studying their effects on induction of 6-thioguanine (6TG)-resistant mutations by ethyl methanesulfonate (EMS) in cultured Chinese hamster V79 cells. DRA had a remarkable inhibitory effect against the cytotoxicity of EMS, when cells were simultaneously-treated with EMS, showing a blocking or scavenging activity of DHA in reduction of surviving fraction of cells. DHA had not so significant effect, when cells were treated before and after treatment with EMS. On the other hand, EPA had marked inhibiting effects against cytotoxicity of EMS, when cells were treated with EPA, before, simultaneous and after treatment with EMS. Against the induction of mutations by EMS, an antimutagenic activity of DHA was found when cells were pre-treated, simultaneously-treated or post-treated with DHA. EPA was also effective in reducing EMS-induced 6TG-resistant mutations when the cells were treated using the three different treatment procedures described above. The results suggest that in cultured Chinese hamster V79 cells, DHA and EPA may have both desmutagenic activity, which inactivates EMS chemically and/or enzymatically and bio-antimutagenic activity which suppresses mutation fixation after DNA is damaged by EMS.  相似文献   

9.
《Mutation Research Letters》1990,243(4):299-302
X-ray-induced chromosome aberrations were suppressed when vanillin, cinnamaldehyde, or p-anisaldehyde was given orally to mice after X-ray irradiation. Chromosome aberrations were monitored by the occurrence of polychromatic erythrocytes with micronuclei in bone marrow cells. The frequency of micronuclei was depressed about 55–60% without toxicity of the test compounds to the bone marrow.  相似文献   

10.
This study was conducted to compare the effectiveness and efficiency of sodium azide tNaN3) and ethyl methanesulfonate (EMS) for inducing somatic mutations at the yg2 locus in maize seeds of two different metabolic states and cell populations. Dormant or presoaked (72 h at 20 degrees C) seeds heterozygous for yg2 locus were treated with different concentrations of either EMS or NaN3. The cell populations with respect to the percentage of cells in G1, S, G2, and M were also determined for seeds of the two metabolic states. Dormant seeds possessed a higher percentage of cells in G1 and the presoaked seeds a higher percentage of cells in S, G2, and M. The frequency of yg2 sectors in leaves 4 and 5 increased with increasing concentration of both mutagens in both dormant and presoaked seeds. Both mutagens were more effective and efficient in the presoaked seeds. NaN3 was more effective than EMS in terms of number of sectors induced per unit of dose. However, EMS was more efficient as determined by sectors induced per unit of seedling injury and clearly had the ability to induce much higher sector frequencies (more than 10 times greater) than NaN3. The low ability of NaN3 (compared to EMS) to induce mutant sectors may be related to the cells not being treated at the optimum time during the cell cycle, but it is more likely due to its low effectiveness for inducing chromosome aberrations.  相似文献   

11.
Antimutagenesis by factors affecting DNA repair in bacteria   总被引:3,自引:0,他引:3  
Y Kuroda  T Inoue 《Mutation research》1988,202(2):387-391
The term 'antimutagen' was originally used to describe an agent that reduces the apparent yield of spontaneous and/or induced mutations, regardless of the mechanisms involved. The 'antimutagens' include 'desmutagens' and 'bio-antimutagens'. In this article, our attention was focused on the bio-antimutagens affecting DNA repair in bacteria. Cobaltous chloride reduced the frequency of mutations in Escherichia coli induced by MNNG. The possibility that metal compound inhibits the growth of mutagen-treated cells was examined. The results clearly showed that the antimutagen surely reduces the mutation rate. The target of cobaltous chloride was found to be cellular factors including Rec A. Vanillin and cinnamaldehyde had strong antimutagenic activities against UV, 4NQO and AF-2. They stimulated Rec A-dependent recombination repair functions in the mutagen-treated cells. Among plant materials, tannins possess antimutagenic activity against UV-induced mutations in E. coli. It has been found that tannic acid stimulates the excision repair encoded by the uvrA gene thereby reducing the yield of mutants. Substances which are antimutagenic in bacterial systems also had antimutagenic activity in cultured mammalian cell systems. Vanillin reduced the frequency of mutagen-induced chromosomal aberrations.  相似文献   

12.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

13.
K. Miller   《Mutation research》1991,251(2):241-251
The effects of bleomycin (BM), cyclophosphamide (CP), and ethyl methanesulfonate (EMS) on the frequencies of chromosomal aberrations were tested in mitogen-stimulated highly purified human B- and T-lymphocytes. In unstimulated G0/G1 B- and T-lymphocytes the clastogen induction of chromosome fragments was investigated in prematurely condensed chromosomes (PCC) induced by cell fusion with xenogenic mitotic cells. BM, CP (with metabolic activation), and EMS induced a significant increase in chromosome aberrations in proliferating human B- and T-lymphocytes. There were no significant differences in the BM-induced aberration rates between the cell populations. CP and EMS induced more aberrations in T- than in B-lymphocytes. In the PCC tests, BM-exposed G0/G1 lymphocytes showed dose-dependent high yields of chromosome fragments. No significant differences between B- and T-lymphocytes were observed. CP and EMS induced no clear increase in fragments in either cell population.  相似文献   

14.
Chromosome aberrations were analyzed at the first-cleavage metaphase of mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) as well as to methyl and ethyl methanesulfonate (MMS and EMS). The frequencies of chromosome aberrations markedly increased with dose of UV as well as with concentration of MMS and EMS. In the UV-irradiation group, the frequency of chromosome-type aberrations was much higher than that of chromatid-type aberrations. About 90% of chromosome aberrations observed in the eggs following MMS and EMS treatment to sperm were chromosome type in which the frequency of chromosome fragments was the highest. The effects of UV on the induction of chromosome aberrations were clearly potentiated by post-treatment incubation of fertilized eggs in the presence of Ara-C or caffeine, but the effects of MMS and EMS were not pronounced by post-treatment of Ara-C or caffeine. The results indicate a possibility that UV damage induced in mouse sperm DNA is reparable in the eggs during the period between the entry of sperm into the egg cytoplasm and the first-cleavage metaphase.  相似文献   

15.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

16.
Non-toxic, conditioning doses of aluminium chloride were tested for induction of adaptive response to the genotoxic challenge doses of methyl mercuric chloride (MMCl), maleic hydrazide (MH) and ethyl methane sulfonate (EMS). Embryonic shoot cells of Hordeum vulgare and root meristem cells of Allium cepa were employed as the assay systems. Plant tissues fixed at different recovery hours following the challenge treatments with or without prior Al-conditioning were analyzed for cells with genotoxicity markers that include spindle and/or chromosome aberrations and micronuclei (MNC). The results provided evidence that Al(3+) triggered adaptive response that protected the plant cells from the genotoxicity of MMCl and EMS. Al(3+), however, failed to induce adaptive response against the genotoxicity of MH. A comparison of Al-induced adaptive response with that induced by heavy metals: Cd(2+), Cu(2+), Hg(2+), Ni(2+), Pb(2+), Zn(2+) and oxidative agents: hydrogen peroxide (H(2)O(2)) and paraquat (PQ) pointed to the similarity of Al-adaptive response to that of PQ rather than to other heavy metals or H(2)O(2). Al-induced adaptive response demonstrated in the present study to MMCl and EMS possibly involved antioxidant defense and DNA repair systems, respectively.  相似文献   

17.
Hong F  Kwon SJ  Jhun BS  Kim SS  Ha J  Kim SJ  Sohn NW  Kang C  Kang I 《Life sciences》2001,68(10):1095-1105
Oxidative stress plays a critical role in cardiac injuries during ischemia/reperfusion. Insulin-like growth factor-1 (IGF-1) promotes cell survival in a number of cell types, but the effect of IGF-1 on the oxidative stress has not been elucidated in cardiac muscle cells. Therefore, we examined the role of IGF-1 signaling pathway in cell survival against H2O2-induced apoptosis in H9c2 cardiac myoblasts. H2O2 treatment induced apoptosis in H9c2 cells, and pretreatment of cells with IGF-1 suppressed apoptotic cell death. The antiapoptotic effect of IGF-1 was blocked by LY294002 (an inhibitor of phosphatidylinositol 3-kinase) and by PD98059 (an inhibitor of extracellular signal-regulated kinase (ERK)). The protective effect of IGF-1 was also blocked by rapamycin (an inhibitor of p70 S6 kinase). Furthermore, H9c2 cells stably transfected with constitutively active PI 3-kinase (H9c2-p110*) and Akt (H9c2-Gag-Akt) constructs were more resistant to H2O2 cytotoxicity than control cells. Although H2O2 activates both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), IGF-1 inhibited only JNK activation. Activated PI 3-kinase (H9c2-p110*) and pretreatment of cells with IGF-1 down-regulated Bax protein levels compared to control cells. Taken together, our results suggest that IGF-1 transmits a survival signal against oxidative stress-induced apoptosis in H9c2 cells via PI 3-kinase and ERK-dependent pathways and the protective effect of IGF-1 is associated with the inhibition of JNK activation and Bax expression.  相似文献   

18.
The cytogenetic effect of hydrogen peroxide (H2O2) was investigated in human embryonic fibroblasts. Chromosome-type aberrations were found together with chromatid-type aberrations in metaphase cells harvested 24 h after a single 10-min treatment with 10(-5)-10(-3) M H2O2 in 0.9% NaCl solution. The chromosome-type aberrations were observed to be predominantly dicentrics and deletions. Both types of aberration showed a dose-response relationship to the dose of H2O2 over the range of 10(-5)-1.5 X 10(-4) M H2O2. The intercellular distribution of dicentrics showed a Poisson distribution. Centric and acentric rings and abnormal monocentrics were a minor fraction of the chromosome-type aberrations. The chromatid-type aberrations observed, such as breaks, exchanges and gaps, showed no dose-response relationship. The frequency of isochromatid breaks was higher than that of chromatid breaks and approximately 70% of the isochromatid breaks were found in the centromeric or pericentromeric region. The intercellular distribution of chromatid exchanges showed an over-dispersed distribution. The generation of aberrations by H2O2 was effectively suppressed by catalase and several scavengers of hydroxyl radicals (.OH) such as ethanol, dimethyl sulfoxide (DMSO) and mannitol. This result suggest that .OH plays an essential role in the generation of the chromosome aberrations by H2O2.  相似文献   

19.
The induction by H2O2 of DNA breaks, DNA double-strand breaks (DSBs), and interphase chromatin damage and their relationship to cytotoxicity were studied in plateau-phase Chinese hamster ovary (CHO) cells. Damage in interphase chromatin was assayed by means of premature chromosome condensation (PCC); DNA DSBs were assayed by nondenaturing filter elution (pH 9.6), and DNA breaks by hydroxyapatite chromatography. Cells were treated with H2O2 in suspension at 0 degrees C for 30 min and treatment was terminated by the addition of catalase. Concentrations of H2O2 lower than 1 mM were not cytotoxic, whereas concentrations of 40 and 60 mM reduced cell survival to 0.1 and 0.004, respectively. An induction of DNA breaks that was dependent on H2O2 concentration was observed at low H2O2 concentrations that reached a maximum at approximately 1 mM; at higher H2O2 concentrations induction of DNA breaks either remained unchanged or decreased. Damage at the chromosome level was not evenly distributed among the cells, when compared to that expected based on a Poisson distribution. Three categories of cells were identified after exposure to H2O2: cells with intact, control-like chromosomes, cells showing chromosome fragmentation similar to that observed in cells exposed to ionizing radiation, and cells showing a loss in the ability of their chromatin to condense into chromosomes under the PCC reaction. The fraction of cells with fragmented chromosomes, as well as the number of excess chromosomes per cell, showed a dose response similar to that of DNA DSBs, reaching a maximum at 1 mM and decreasing at higher concentrations. The results indicate that induction of DNA and chromosome damage by H2O2 follows a complex dependence probably resulting from a depletion of reducing equivalents in the vicinity of the DNA. Reducing equivalents are required to recycle the transition metal ions that are needed to maintain a Fenton-type reaction. The absence of cell killing at H2O2 concentrations that yielded the maximum amount of DNA and chromosome damage suggests that this damage is nonlethal and repairable. It is suggested that lethal DNA and chromosome damage is induced at higher concentrations of H2O2 where cell killing is observed by an unidentified mechanism.  相似文献   

20.
6-Hydroxydopamine (6-OHDA) is a neurotoxin that has been widely used to generate Parkinson's disease (PD) models. Increased oxidative stress is suggested to play an important role in 6-OHDA-induced cell death. Given the lessened susceptibility to oxidative stress exhibited by mice lacking p66shc, this study investigated the role of p66shc in the cytotoxicity of 6-OHDA. 6-OHDA induced cell death and p66shc phosphorylation at Ser36 in SH-SY5Y cells. Pre-treatment with the protein kinase C β (PKCβ) inhibitor hispidin suppressed 6-OHDA-induced p66shc phosphorylation. Elimination of H(2)O(2) by catalase reduced cell death and p66shc phosphorylation induced by 6-OHDA. Cells deficient in p66shc were more resistant to 6-OHDA-induced cell death than wild-type cells. Furthermore, reconstitution of wild-type p66shc, but not the S36A mutant, in p66shc-deficient cells increased susceptibility to 6-OHDA. These results indicate that H(2)O(2) derived from 6-OHDA is an important mediator of cell death and p66shc phosphorylation induced by 6-OHDA and that p66shc phosphorylation at Ser36 is indispensable for the cytotoxicity of 6-OHDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号