首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial and temporal expression pattern of cyclophilin (Cyp) was examined during the embryonic development of the sea urchins Anthocidaris crassispina and Hemicentrotus pulcherrimus using Western blot analysis and indirect immunofluorescence microscopy. In this study, affinity-purified anti-human Cyp A antibody was used as the primary antibody. Western blot analysis revealed that a single 17.5 kDa immunoreactive band of Cyp was present in unfertilized eggs, in embryos during several stages of development, and in ovaries and testes of adult sea urchins. Cyp was also recognized in unfertilized eggs and embryonic sea urchin cells by indirect immunofluorescence microscopy, but its concentrations within the embryonic tissues varied significantly during embryogenesis. Expression of Cyp during the cleavage stage was thought to be attributable to maternal Cyp products, with zygotic expression appearing after gastrulation. Cyp expression appears to increase depending on the Cyp concentration in the vegetal and apical plates and primary mesenchyme cells in mesenchyme blastulae, and in the oral ectodermal ridge, gut and skeletogenetic mesenchyme cells in pluteus larvae. These results suggest that widespread embryonic distribution and an increased Cyp content occur during the gastrulation in sea urchin development.  相似文献   

2.
The Endo16 gene encodes a large extracellular protein with several functional domains that provide some insight into the role of this protein during embryonic development. We isolated the full-length cDNA sequence from Lytechinus variegatus and utilized morpholinos to further investigate the role of Endo16 during embryonic development in this species. Endo16-deficient embryos failed to undergo gastrulation and the blastocoele became filled with dissociated cells after 24 h of incubation. Moreover, there was a delay in endoderm differentiation as assayed by staining with an antibody that recognizes Endo1. The differentiation of other cell types including oral ectoderm, primary mesenchymal cells (PMC) and secondary mesenchymal cells (SMC) appeared to be normal, although the patterns of protein expression did not resemble control embryos due to the gross morphological abnormalities elicited by the LvEndo16 morpholino. Microinjection of full-length EGFP mRNA with the LvEndo16 morpholino-targeted sequence confirmed that this phenotype can be attributed specifically to the loss of Endo16 protein. Taken together, our data suggest that Endo16 may be required for the cell-extracellular matrix (ECM) interactions that are required for endoderm differentiation in the sea urchin embryo.  相似文献   

3.
An antiserum to isolated membranes of gastrula-stage embryos of the sea urchin Lytechinus variegatus was characterized by absorption and cell agglutination specificities. The antiserum was found to recognize four distinct classes of antigens on the embryonic cell surface: (1) an early embryonic class or “maternal” class present from the earliest stages of development, (2) an embryonic class of antigens which appeared on all cells beginning at gastrulation, (3) a class of antigens present on ectoderm cells, and (4) a class of antigens present on endoderm cells. All four classes of antigens were shown indirectly to be synthesized on embryonic mRNA since a hybrid embryo of the cross Tripneustes ♀ × Lytechinus ♂ expressed all four classes of Lytechinus-specific antigens beginning at gastrulation. Each class was Lytechinus specific in that hybrid cells were agglutinated if beyond the beginning of gastrulation, while normal Tripneustes ♀ × Tripneustes ♂ cells were not agglutinated.  相似文献   

4.
The calcareous larval skeleton of euechinoid sea urchins is synthesized by primary mesenchyme cells which ingress prior to gastrulation. In embryos of the cidaroid sea urchin Eucidaris tribuloides, no mesenchyme cells ingress before gastrulation, yet larvae later contain skeletons. This apparent paradox is resolved by immunochemical, cell lineage and morphological evidence showing that spicule-forming cells of Eucidaris are homologous to primary mesenchyme cells of euechinoids. In particular, these two cell types share expression of two cell lineage-specific gene products, are derived from the same cellular precursors, the micromeres, and undergo a similar migratory phase prior to skeletogenesis. Despite these similarities, there are far fewer spicule-forming cells in Eucidaris than in typical euechinoids and they assume a different pattern during spiculogenesis. The homology between Eucidaris spicule-forming cells and euechinoid primary mesenchyme cells indicates that a heterochrony in the time of spicule-forming cell ingression has occurred since the divergence of their respective lineages.  相似文献   

5.
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.  相似文献   

6.
The extracellular matrix of the sea urchin embryo contains a 230 kD homodimeric glycoprotein known as echinonectin (EN). EN contains a cell attachment domain as well as a galactose-specific lectin activity. Cell attachment to EN is differentially regulated in the three primary germ layers, endoderm, ectoderm and mesoderm. Prior to gastrulation all embryonic cells adhere equally to EN-coated substrates, but during gastrulation primary mesenchyme cells lose affinity for EN, ectoderm cells increase their binding to the molecule, and cells of the endoderm maintain a similar or slightly lowered level of binding. The mechanisms governing these adhesive changes and the specific functions they serve in development are not currently understood. They are timed to coincide with distinct morphogenetic events such as primary mesenchyme cell ingression and archenteron formation, suggesting that regulated adhesion to EN plays at least a permissive role in early morphogenesis.  相似文献   

7.
The mitogen activated protein (MAP) kinase signaling cascade has been implicated in a wide variety of events during early embryonic development. We investigated the profile of MAP kinase activity during early development in the sea urchin, Strongylocentrotus purpuratus, and tested if disruption of the MAP kinase signaling cascade has any effect on developmental events. MAP kinase undergoes a rapid, transient activation at the early blastula stage. After returning to basal levels, the activity again peaks at early gastrula stage and remains high through the pluteus stage. Immunostaining of early blastula stage embryos using antibodies revealed that a small subset of cells forming a ring at the vegetal plate exhibited active MAP kinase. In gastrula stage embryos, no specific subset of cells expressed enhanced levels of active enzyme. If the signaling cascade was inhibited at any time between the one cell and early blastula stage, gastrulation was delayed, and a significant percentage of embryos underwent exogastrulation. In embryos treated with MAP kinase signaling inhibitors after the blastula stage, gastrulation was normal but spiculogenesis was affected. The data suggest that MAP kinase signaling plays a role in gastrulation and spiculogenesis in sea urchin embryos.  相似文献   

8.
Acetylcholinesterase during the development of the sea urchin Pseudocentrotus depressus was examined by enzyme assay (the colorimetric method of E llman et al. ), histochemistry (a Cu-thiocholine method), polyacrylamide gel electrophoresis and DEAE-Sephadex ion exchange chromatography.
The enzyme activity is detected in the unfertilized egg, remains low during cleavage, elevates slightly through gastrulation, and then increases rapidly thereafter. The intense activity is localized in the mesenchyme cells associated with the larval skeleton of young pluteus larvae, and their cell membranes and nuclear envelops. Soluble enzyme accounts for 60% of the total activity. The additional 34% is extracted by 1% Triton X-100 from particulates. The soluble enzyme consists of two forms. Both are strongly acidic proteins which are similar in electric charge, but dissimilar in size, being 180,000 and 280,000 in molecular weights. The enzyme released from the membrane by the detergent possesses a component which is not present in the soluble complement of the enzyme. It is not a secondary product of the soluble enzyme interacting with the detergent.
Acetylcholinesterase serves as a marker of late differentiation and regional differentiation in the sea urchin embryo.  相似文献   

9.
We describe the isolation and characterization of a cDNA clone encoding a region of the carboxy terminal globular domain (G domain) of the alpha-1 chain of laminin from the sea urchin, Strongylocentrotus purpuratus. Sequence analysis indicates that the 1.3 kb cDNA (spLAM-alpha) encodes the complete G2 and G3 subdomains of sea urchin a-laminin. The 11 kb spLAM-alpha mRNA is present in the egg and declines slightly in abundance during development to the pluteus larva. The spLAM-alpha gene is also expressed in a variety of adult tissues. Whole mount in situ hybridization of gastrula stage embryos indicates that ectodermal and endodermal epithelia and mesenchyme cells contain the spLAM-alpha mRNA. Immunoprecipitation experiments using an antibody made to a recombinant fusion protein indicates spLAM-alpha protein is synthesized continuously from fertilization as a 420 kDa protein which accumulates from low levels in the egg to elevated levels in the pluteus larva. Light and electron microscopy identify spLAM-alpha as a component of the basal lamina. Blastocoelic microinjection of an antibody to recombinant spLAM-alpha perturbs gastrulation and skeleton formation by primary mesenchyme cells suggesting an important role for laminin in endodermal and mesodermal morphogenesis.  相似文献   

10.
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.  相似文献   

11.
12.
13.
The synthesis and secretion of collagen by cultured sea urchin micromeres   总被引:1,自引:0,他引:1  
Circumstantial evidence in several previous studies has suggested that sea urchin embryo micromeres, the source of primary mesenchyme cells which produce the embryonic skeleton, contribute to the extracellular matrix of the embryo by synthesizing collagen. A direct test of this possibility was carried out by culturing isolated micromeres of the sea urchin Stronglyocentrotus purpuratus in artificial sea water containing 4% (v/v) horse serum. Under these conditions the micromeres divide and differentiate to produce spicules with the same timing as intact embryos. Collagen synthesis was determined by labeling cultures with [3H]proline or [35S]methionine and the medium and cell layer were assayed for collagen. The results indicate that by the second day in culture micromeres synthesize and secrete a collagenase-sensitive protein doublet with a molecular weight of about 210 kDa. Densitometry indicates a 2:1 ratio of the respective bands in the doublet which is characteristic of Type I collagen. The doublet is insensitive to digestion with pepsin. This differential sensitivity is characteristic of collagen. Over 90% of the collagen synthesized by micromeres is soluble in the seawater culture medium. On days 2-4 in culture, collagen accounts for 5% of the total protein synthesized and secreted. Additional collagenase-sensitive bands are noted at 145 and 51 kDa. The relationship of the described collagen metabolism to previously characterized collagen gene expression in sea urchin embryos is discussed.  相似文献   

14.
Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N‐terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125‐treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. genesis 53:762–769, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
It has been demonstrated that specific changes in carbohydrate-containing cell surface lectin receptor sites occur with differentiation and maturation of sea urchin embryo cells. In this study, evidence is presented, using a quantitative electronic particle counter assay to measure agglutination, which indicates that concanavalin A (Con A) mediated agglutination of dissociated 32/64 cell sea urchin embryos differs dramatically with respect to specific cell populations. The migratory cell type, the micromere, is significantly more agglutinable with Con A than the other cell types and colchicine treatment markedly increases sea urchin embryo cell agglutinability. The results indicate that like many malignant cells which display extensive migratory behavior, specific migratory populations of embryonic cells are agglutinable with Con A. The results are discussed with respect to the possible nature of lectin receptor sites on specific populations of embryonic cells and the possible role of colchicine-sensitive structures in controlling the display patterns of these sites.  相似文献   

16.
Processes of gastrulation in the sea urchin embryo have been intensively studied to reveal the mechanisms involved in the invagination of a monolayered epithelium. It is widely accepted that the invagination proceeds in two steps (primary and secondary invagination) until the archenteron reaches the apical plate, and that the constituent cells of the resulting archenteron are exclusively derived from the veg2 tier of blastomeres formed at the 60-cell stage. However, recent studies have shown that the recruitment of the archenteron cells lasts as late as the late prism stage, and some descendants of veg1 blastomeres are also recruited into the archenteron. In this review, we first illustrate the current outline of sea urchin gastrulation. Second, several factors, such as cytoskeletons, cell contact and extracellular matrix, will be discussed in relation to the cellular and mechanical basis of gastrulation. Third, differences in the manner of gastrulation among sea urchin species will be described; in some species, the archenteron does not elongate stepwise but continuously. In those embryos, bottle cells are scarcely observed, and the archenteron cells are not rearranged during invagination unlike in typical sea urchins. Attention will be also paid to some other factors, such as the turgor pressure of blastocoele and the force generated by blastocoele wall. These factors, in spite of their significance, have been neglected in the analysis of sea urchin gastrulation. Lastly, we will discuss how behavior of pigment cells defines the manner of gastrulation, because pigment cells recently turned out to be the bottle cells that trigger the initial inward bending of the vegetal plate.  相似文献   

17.
Histone modifications accompanying the onset of developmental commitment   总被引:1,自引:0,他引:1  
In the sea urchin, Strongylocentrotus purpuratus, three cell types comprise the 16-cell stage embryo: micromeres, macromeres, and mesomeres. We have analyzed these three cell types for nuclear proteins that were synthesized during the earliest stages of embryonic development. The most striking differences in composition of newly synthesized proteins were found between the micromeres, which are the most committed cell type, and the macromeres and mesomeres. First, the micromeres lacked triply modified forms of histone H3; the levels of doubly modified forms of H3 were also greatly reduced. In contrast, micromeres were enriched in a band which migrated at the position of unmodified, unacetylated, histone H3 protein. Second, the overall distribution of H2A histone variants differed among the three cell types. Compared with macromeres and mesomeres, micromeres had a higher ratio of alpha-stage to cleavage-stage (CS) histone H2A; the micromere nuclei were depleted by 50 and 35%, respectively, in embryonically synthesized histone CS-H2A. Third, micromeres displayed different profiles of H1 histones. (a) They contained a cleavage-stage H1 histone which migrated faster than that of macromeres and mesomeres. This protein displays the electrophoretic behavior expected for a protein with reduced levels of posttranslational covalent modification. (b) Micromeres also had reduced levels of an H1 histone (designated H1 alpha a) band found in the alpha-H1 region of macromeres and mesomeres. These changes in chromatin modification correlate with the degree of commitment of cells in the developing embryo; they may reflect differing activities of the chromatin modifying enzymes in the various cell types at the 16-cell stage. Thus, the newly synthesized chromatin proteins of the individual blastomere types already differ in the developing sea urchin by the 16-cell stage. We suggest that variations in histone subtypes and in the levels of activity of chromatin modifying enzymes, e.g., acetylases and phosphorylases, could be involved in commitment and differentiation of different cell types.  相似文献   

18.
19.
Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa mRNA, which is present uniformly throughout all cells of the early embryo, vasa protein accumulates selectively in the 16-cell stage micromeres, and then is restricted to the small micromeres through gastrulation to larval development. Manipulating early embryonic fate specification by blastomere separations, exposure to lithium, and dominant-negative cadherin each suggest that, although vasa protein accumulation in the small micromeres is fixed, accumulation in other cells of the embryo is inducible. Indeed, we find that embryos in which micromeres are removed respond by significant up-regulation of vasa protein translation, followed by spatial restriction of the protein late in gastrulation. Overall, these results support the contention that sea urchins do not have obligate primordial germ cells determined in early development, that vasa may function in an early stem cell population of the embryo, and that vasa expression in this embryo is restricted early by translational regulation to the small micromere lineage.  相似文献   

20.
During gastrulation of the sea urchin, Lytechinus variegutus there is localized proliferation of cells in the vegetal plate region prior to its invagination. Cell counts show that during gastrulation the number of cells per embryo increases 60% from 1025 to 1640. Measurements of cell volumes suggest that some growth may follow these divisions. Feulgen staining shows that the greatest mitotic activity throughout gastrulation occurs in the vegetal plate region. Labelling embryos with 3H-thymidine reveals that incorporation in the vegetal plate is confined to cells that encircle the base of the archenteron. Pulse-chase experiments indicate that these labelled cells contribute descendants to the vegetal half of the archenteron. Additionally, 3-dimensional reconstructions of vegetal regions at different stages reveal that by the end of gastrulation two bilateral clusters of labelled cells lie at the future sites of the post-oral arms of the pluteus larva, thus marking the axes of bilateral and dorso-ventral symmetry. Our findings suggest that two of the principal events of sea urchin gastrulation — the formation of the archenteron and the establishment of symmetry in the larva — are accompanied by distinct patterns of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号