首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Alhadeff  P Watkins 《Enzyme》1984,31(2):90-103
The enzymatic transfer of GlcNAc from UDP-GlcNAc and Man from GDP-Man to Dol-P has been characterized in human liver preparations. The presence of low concentrations of detergent, divalent cation and exogenous Dol-P are required for both enzymatic activities. The pH optimum of both reactions is broad with maximal activity near pH 7.8. The majority of N-acetylglucosaminyltransferase (90%) and mannosyltransferase (85%) activities is particulate but approximately 90% of both activities can be released into supernatant fluids by using Triton X-100 in the homogenizing buffer. The supernatant fluid enzymes have properties similar to those of the particulate enzymes although their activities are considerably less stable. Preliminary characterization of the enzymatic reaction products gave the following evidence for formation of GlcNAc and Man derivatives of Dol-P: (1) radiolabelled products are soluble in organic solvents; (2) for each reaction no detectable product is found without addition of exogenous Dol-P and increasing amounts of product are found with increasing amounts of this lipid; (3) acid and base hydrolysis of the glycolipid product (from the N-acetylglucosaminyltransferase reaction) result in radioactive, water-soluble compounds which comigrate with authentic GlcNAc and GlcNAc-1-P, respectively; (4) acid and base hydrolysis of the glycolipid product (from the mannosyltransferase reaction) result in radioactive, water-soluble compounds which comigrate with authentic Man and Man-1-P, respectively.  相似文献   

2.
Increased incorporation of mannose into endogenous glycoprotein fractions has been found in whole cell lysates and crude membrane preparations of cultured skin fibroblasts from patients with cystic fibrosis (1.3–2.3-times normal) when GDP[14C]mannose served as the mannosyl donor. In contrast, the incorporation of mannose from GDPmannose into lipid fractions containing dolichol phosphate and dolichol pyrophosphate oligosaccharides as well as the incorporation of mannose from dolichol phospho[3H]mannose into both glycoproteins and dolichol derivatives were not significantly different among cell preparations from patients with cystic fibrosis and normal controls. Mannosyltransferase activity toward exogenous glycoproteins as well as the activities of soluble and membranous α-mannosidase and β-mannosidase appeared to be normal and could not account for the observed differences. The altered incorporation of mannose into endogenous glycoprotein may reflect changes in glycosylation processes other than mannosylation.  相似文献   

3.
The oligosaccharides previously bound to dolichol diphosphate were isolated from Saccharomyces cerevisiae cells incubated with [U-14C]glucose. Five compounds were obtained that migrated with RGlucose of 0.100, 0.120, 0.145, 0.180, and 0.215 on paper chromatography. All of them contained mannose and 2 N-acetylhexosamine residues. The substances that migrated with the three lower RGlucose values had, in addition, glucose units. The structure of the oligosacchardies was very similar if not identical with that of the oligosaccharides isolated from the dolichol diphosphate derivatives synthesized "in vitro" by yeast or rat liver particulate preparations or "in vivo" by dog thyroid or rat liver slices as judged by their migration on paper chromatography, monosaccharide composition, and degradation compounds produced by alpha-mannosidase treatment or acetolysis. The oligosaccharides previously bound to asparagine residues in proteins were isolated from yeast cells which had been pulsed with [U-14C]glucose and chased with medium containing the unlabeled monosaccharide. The samples taken after very short pulses contained four oligosaccharides that migrated with RGlucose of 0.100, 0.120, 0.145, and 0.180 on paper chromatography. The first three compounds contained glucose, mannose, and 2 N-acetylhexosamine residues whereas the one that migrated with a RGlucose of 0.180 was devoid of the former monosaccharide. Samples taken after short chase periods revealed that the compounds that migrated with the lower RGlucose values gradually disappeared and were converted to the oligosaccharide with the higher RGlucose value was they lost their glucose residues. Similar analysis as those mentioned above showed that the structures of these compounds were similar to those of the dolichol diphosphate-bound oligosaccharides. Samples taken after longer chase periods revealed that the oligosaccharide that migrated with a RGlucose of 0.180 was subsequently either enlarged by the addition of more mannose residues or trimmed to smaller sizes.  相似文献   

4.
Membrane preparations from Acer pseudoplatanus suspension cultures were demonstrated to incorporate radioactivity from GDP-[U-14C]mannose and UDP-N-acetyl-[6-(3)H]glucosamine into high-molecular-weight polymers characterized as glycoprotein. From 20 to 25% of the 14C was incorporated as fucose with the remainder as mannose, whereas 90% of the 3H was incorporated as N-acetylglucosamine with the remainder as N-acetylgalactosamine. Pronase digestion yielded radioactive glycopeptides that were separated into four fractions by gel-permeation chromatography and paper electrophoresis. The isolated glycopeptides differed in molecular weight and isotopes incorporated, as well as in amino-acid and monosaccharide composition. The membrane preparation also incorporated radioactivity from the added nucleotides into chloroform/methanol (2:1, v/v)- and chloroform/methanol/water (10:10:3, by vol.)-soluble lipids, and into an insoluble pellet.  相似文献   

5.
Calf brain membranes catalyze the lipolytic cleavage of dolichyl [14C]oleate added as an aqueous dispersion in Triton X-100. The enzymatic release of [14C]oleate from the dolichyl ester is not affected by divalent cations or EDTA, but the lipase activity is inhibited by iodoacetamide and pHMB. The amount of [14C]oleate released is dependent on the time of incubation, the amount of membrane protein added and the concentration of the radiolabeled lipid substrate. Dolichyl ester hydrolase activity exhibits a pH optimum of 7.5, distinguishing this lipase activity from cholesteryl ester hydrolase (5.0–5.5) and triolein hydrolase (5.0) activity associated with the same membrane preparations. The enzymatic hydrolysis of dolichyl [14C]oleate is also partially inhibited by oleate and free dolichol, possibly by end-product inhibition.  相似文献   

6.
7.
Calf brain membranes have been shown to enzymatically dephosphorylate endogenous and partially purified, exogenous dolichyl [32P]monophosphate. The properties and specificity of the dolichyl monophosphatase activity have been studied by following the release of [32P]phosphate from exogenous dolichyl [32P]monophosphate added in a dispersion with Triton X-100. The calf brain phosphatase (1) is inhibited by Mn2+, Mg2+, Ca2+, fluoride, and phosphate; (2) exhibits a neutral pH optimum; and (3) has an apparent Km of 200 μm for dolichyl monophosphate. Dolichyl monophosphatase activity can be distinguished from phosphatidate phosphatase on the basis of their responses to fluoride and phosphate. Based on differential thermolability and the effects of divalent cations and EDTA, the calf brain dolichyl monophosphatase can also be discriminated from the general phosphatase activity assayed with p-nitrophenyl phosphate. Dolichyl monophosphatase activity can be solubilized by treating microsomes with Triton X-100. The enzymatic dephosphorylation of exogenous dolichyl [32P]monophosphate catalyzed by particulate and detergent-solubilized preparations is negligibly affected by equimolar concentrations of ATP and an assortment of phosphomonoesters, including phosphatidic acid and hexadecyl phosphate. A reduction of approximately 40% in dolichyl monophosphatase activity is observed in the presence of equimolar amounts of retinyl monophosphate. Overall, these results represent good evidence for the presence of a neutral polyisoprenyl monophosphatase in central nervous tissue.  相似文献   

8.
Pea membranes were incubated with UDP-[14C]galactose and sequentially extracted with lipid solvents and 2% sodium dodecyl sulfate (SDS). At least three-quarters of the products were SDS-soluble. All fractions contained some [14C]glucose, indicating the presence of an active epimerase which, however, could be inhibited by ADP-ribose. The chloroform-methanol extract contained mainly neutral galactosyl lipids and a small amount of dolicyl monophosphoryl glucose. The chloroform-methanol-water extract contained trace amounts of lipid-linked galactosyl oligosaccharide with properties comparable to polyisoprenyl pyrophosphoryl derivatives. Polyacrylamide gel electrophoresis of SDS-soluble products indicated the formation of both immobile and mobile components with similar size distribution (Sepharose CL-6B). The mobile component only was susceptible to hydrolysis by protease. Periodate oxidation analysis of SDS-soluble and -insoluble products indicated that they were composed mainly of 1 → 6 galactosyl residues, i.e. as in many arabinogalactan proteins and arabinogalactans.  相似文献   

9.
10.
A comparison of rat brain and liver β-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has revealed that significant differences exist between the enzymes with regard to their kinetic and physical properties. In contrast to the liver enzyme, brain β-hydroxybutyrate dehydrogenase is rapidly inactivated at 46° and is unstable when stored at ?20°. The brain dehydrogenase was found to have a larger Km (apparent) for the 3-acetylpyridine analog of NAD+, and a greater energy of activation in the direction of β-hydroxybutyrate oxidation than the liver enzyme. In the reverse direction, the brain and liver dehydrogenase exhibit substrate inhibition by NADH (0.22 mM and 0.36 mM, respectively). The brain and liver β-hydroxybutyrate dehydrogenase did not differ significantly with regard to the Michaelis-Menten constants measured for NAD+ and β-hydroxybutyrate. The Km constants of brain β-hydroxybutyrate dehydrogenase for acetoacetate (0.39 mM) and NADH (0.05 mM) were lower than those determined for the liver enzyme, acetoacetate (0.73 mM) and NADH (0.35 mM) respectively. These results suggest that the β-hydroxybutyrate dehydrogenase from rat brain and liver are isozymic variants.  相似文献   

11.
Flagellin glycosylation is a necessary modification allowing flagellar assembly, bacterial motility, colonization, and hence virulence for the gastrointestinal pathogen Helicobacter pylori [Josenhans, C., Vossebein, L., Friedrich, S., and Suerbaum, S. (2002) FEMS Microbiol. Lett., 210, 165-172; Schirm, M., Schoenhofen, I.C., Logan, S.M., Waldron, K.C., and Thibault, P. (2005) Anal. Chem., 77, 7774-7782]. A causative agent of gastric and duodenal ulcers, H. pylori, heavily modifies its flagellin with the sialic acid-like sugar 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-alpha-l-manno-nonulosonic acid (pseudaminic acid). Because this sugar is unique to bacteria, its biosynthetic pathway offers potential as a novel therapeutic target. We have identified six H. pylori enzymes, which reconstitute the complete biosynthesis of pseudaminic acid, and its nucleotide-activated form CMP-pseudaminic acid, from UDP-N-acetylglucosamine (UDP-GlcNAc). The pathway intermediates and final product were identified from monitoring sequential reactions with nuclear magnetic resonance (NMR) spectroscopy, thereby confirming the function of each biosynthetic enzyme. Remarkably, the conversion of UDP-GlcNAc to CMP-pseudaminic acid was achieved in a single reaction combining six enzymes. This represents the first complete in vitro enzymatic synthesis of a sialic acid-like sugar and sets the groundwork for future small molecule inhibitor screening and design. Moreover, this study provides a strategy for efficient large-scale synthesis of novel medically relevant bacterial sugars that has not been attainable by chemical methods alone.  相似文献   

12.
13.
—The concentration of lipid- and non-lipid-bound sialic acid in the optic nerve tract and tectum and in whole brain of fish was estimated. The incorporation of sialic acid into gangliosides and non-lipid components was studied in fish by intracranial or intraocular application of N-[3H]acetylmannosamine or N-[3H]acetylglucosamine. After intracranial injection of N-[3H]acetylmannosamine autoradiography showed lipid- and non-lipid-bound radioactivity in the tectum opticum evenly distributed over regions of nerve fibres or perikarya indicating an ubiquitous incorporation of label. Sialic acid incorporation into glycoproteins after intracranial injection of N-acetylmannosamine always exceeded that into gangliosides. TCA-precipitable non-lipid material is labelled from intracranially applied N-acetylmannosamine in the sialic acid portion and also in nonsialic acid components, whereby the percentage of label in sialic acid increases reaching 90 per cent of the total radioactivity after 90 min. After intraocular application of N-[3H]acetylmannosamine, sialic acid in gangliosides was generally found to be more highly labelled than in glycoproteins. The ratio of radioactivity in gangliosides and glycoproteins increased with time of incubation and the distance from the eye. TCA-soluble radioactivity was translocated by fast axonal transport. Cycloheximide inhibited incorporation of N-acetylmannosamine-derived radioactivity into gangliosides and proteins but not the transport of TCA-soluble material, which accumulates in the tectum. After intraocular application of N-[3H]acetylglucosamine, TCA-soluble label arrives later in the optic tectum than radioactivity of high molecular weight components. The ratio of lipid to non-lipid-bound radioactivity does not change considerably with the time after injection or the distance from the eye. There was no accumulation of TCA-soluble radioactivity after the inhibition of incorporation into high molecular weight components.  相似文献   

14.
The effects of addition of 1 microM-dexamethasone on the rate of transfer of mannose from GDP-mannose into mannolipid have been studied in HeLa cell cultures. Concurrent with an increase in incorporation of mannose into glycoproteins, the incorporation of mannose from GDP-mannose in vitro into mannolipid and dolichol-linked oligosaccharides was increased after dexamethasone treatment. Stimulation of mannolipid synthesis showed a correlation with the 11 beta, 17 alpha, 21-trihydroxy structure of C21 steroids. Dexamethasone treatment also resulted in an increased incorporation of acetate into dolichol and dolichyl phosphate. The results suggest that the effect of dexamethasone on the cell-surface glycoprotein accumulation is related to increased sugar-linked dolichol synthesis.  相似文献   

15.
Dolichol functions as a carrier of oligosaccharides to polypeptide chains in the biosynthesis of N-linked glycoproteins. It is here reported that a short (4 hours) transient exposure to tunicamycin, (a specific inhibitor of dolichol dependent glycosylation) causes a cell cycle delay in post-mitotic 3T3-cells. From kinetic point of view the delay following treatment by tunicamycin resembles the delay caused by short exposures to serum deprivation or treatment by cycloheximide, indicating that the expression of N-linked glycoproteins may be involved in the cell cycle regulation. Evidence is that the availability of dolichol may be a limiting factor in this process is also presented.  相似文献   

16.
The presence in the Golgi fraction of glycoproteins destined to be incorporated into the microsomal membrane was investigated. When incubated in sucrose, washed Golgi vesicles released four major, weakly acidic glycoproteins, some of which could be incorporated into microsomal membranes by incubation. Double labeling with [3H]glucosamine and [14C]leucine demonstrated the incorporation of both protein and oligosaccharide moieties, and the main peak of radioactivity was associated with the 70,000 mol wt region after SDS-gel electrophoresis. The proteins that could be incorporated into microsomes were probably associated to a large extent with the outer surface of the Golgi membrane. Centrifugation of the proteins released from the Golgi in a KBr solution (p = 1.24) resulted in a separation of glycoproteins, those in the top layer most actively incorporated into microsomes. The lipoglycoproteins in the top layer that could be incorporated appeared in the 70,000 mol wt region after SDS-gel electrophoresis, as did the corresponding proteins isolated from the supernate. These results suggest that glycoproteins with completed oligosaccharide chains are released from the Golgi system to the cytosol and are subsequently transferred to microsomes as constitutive membrane components.  相似文献   

17.
18.
The transfer of N-acetyl(14C)glucosamine from UDP-N-acetyl(14C)glucosamine to endogenous glycoproteins acceptors were studied comparatively in the nuclei and in the non-nuclear membranes of rat hepatocytes. Electrophoretic and autoradiographic analysis show that most of the glycoprotein acceptors of the nuclei differ from those of the non-nuclear membranes in terms of molecular weight. In addition, it may interesting to mention that in the nuclear fraction a 30% inhibition by tunicamycin is obtained for concentrations as low as 0.03 microM, whereas at this concentration no effect is detected in the non-nuclear membranes. In the presence of 0.2 microM tunicamycin, the inhibition does not go beyond 25% in the latter fraction but goes up to 80% in the former. The previous results demonstrate clearly that a particular glycosylation reaction occurs in the nucleus.  相似文献   

19.
Oligosaccharide chains of agalactoorosomucoid, α1-acid glycoprotein from which sialic acid and galactose have been sequentially removed, terminate in N-acetylglucosaminyl residues. This protein is rapidly transferred from the circulation into the liver by a route distinct from that previously demonstrated for a number of galactosyl terminating glycoproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号