首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of parathyroid extract (PTE) on the renal metabolism of 25-hydroxyvitamin D3 (25-OHD3) was evaluated in rat models for strontium rickets and hypoparathyroidism. PTE elevated the production of 1α,25-(OH)2D3 and suppressed the synthesis of 24,25-(OH)2D3 in both animal models. Part of strontium's action in suppressing 1α,25-(OH)2D3 and stimulating 24,25-(OH)2D3 synthesis in strontium rickets appears to involve a decrease in parathyroid hormone (PTH) secretion and/or action. Calcitonin (CT) was not implicated in the cation's action. Thyroparathyroidectomized rats showed a low level of 1α,25-(OH)2D3 production which increased four- to eightfold following chronic PTE treatment. PTH appears to be the major calcium regulatory hormone involved in modulation of renal 25-OHD3 metabolism.  相似文献   

2.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

3.
An antibody was prepared from serum of rabbits injected with a pure inhibitor protein obtained from rat serum for chick renal 25-hydroxyvitamin D3-1α-hydroxylase. The antibody was separated from the endogenous inhibitor in rabbit serum. The antibody shows a single precipitin line with the rat serum antigen and with crude calf serum. Furthermore, the antibody removes the 4.0 S 25-hydroxyvitamin D3 binding protein from rat serum. The removal of the 25-hydroxyvitamin D3 binding protein from rat serum with antibody brings about a proportionate removal of inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase. The pure inhibitor binds 25-hydroxyvitamin D3, as demonstrated by sucrose density gradient sedimentation, and shows specificity of binding identical to the serum transport globulin for 25-hydroxyvitamin D3. Thus, the previously reported inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase in rat preparations is the serum 25-hydroxyvitamin D3 transport protein or some derivative thereof. The antibody added to rat renal mitochondrial preparations does increase the activity of the 1- and 24-hydroxylases slightly but not markedly.  相似文献   

4.
The biological activity of 1α,24R,25-trihydroxyvitamin D3 [1α,24R,25(OH)3D3] was elevated in comparison to the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], in the rachitic chick in terms of its ability to (a) stimulate intestinal calcium absorption, (b) mobilize bone calcium, (c) induce intestinal calcium binding protein, (d) modulate the level of enzyme activity of the renal 25-OH-D3-1-hydroxylase system, and (e) interact with the intestinal cystosol-chromatin receptor system for the 1α,25(OH)2D3 receptor system. In each of these assays, the relative ratio of activity of 1α,24R,25(OH)3D3 to 1α,25(OH)2D3was (a) 25–50, (b) ca. 20, (c) 10, (d) 50, and (e) 36%, respectively.  相似文献   

5.
H F DeLuca 《Life sciences》1975,17(9):1351-1358
Vitamin D can be regarded as a prohormone and its most potent metabolite, 1, 25-dihydroxyvitamin D3, a hormone which mobilizes calcium and phosphate from bone and intestine. In true hormonal fashion, the biosynthesis of 1, 25-dihydroxyvitamin D3 by kidney mitochondria is feed-back regulated by serum calcium and serum phosphorus levels. The lack of calcium brings about a secretion of parathyroid hormone which stimulates 1, 25-dihydroxyvitamin D3 synthesis while low blood phosphorus stimulates 1, 25-dihydroxyvitamin D3 synthesis even in the absence of the parathyroid glands. For such regulation to occur, vitamin D must be present probably because 1, 25-dihydroxyvitamin D3 itself is needed for the regulation. The molecular and cellular mechanisms whereby 1, 25-dihydroxyvitamin D3 synthesis is regulated are unknown despite many recent reports. Likely the elucidation of these mechanisms must await a detailed investigation of the enzymology of the renal 25-hydroxyvitamin D3-1α-hydroxylase. In addition to the regulation at the 25-hydroxyvitamin D3-1α-hydroxylase step, vitamin D metabolism is regulated at the hepatic vitamin D-25-hydroxylase level. This regulation is a suppression of the hydroxylase by the hepatic level of 25-hydroxyvitamin D3 itself by an unknown mechanism. Much remains to be learned concerning the regulation of this newly discovered endocrine system but already the findings are not only relevant to calcium homeostasis but also to an understanding of a variety of metabolic bone diseases.  相似文献   

6.
Kidney tubules obtained from chicks fed a high-calcium low-phosphorus diet retained 25-hydroxyvitamin D3-1-hydroxylase activity after a 10 h incubation in serum-free minimum essential medium. Inclusion of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) in the medium prompted a suppression of 25-hydroxyvitamin D3-1-hydroxylase and the induction of 25-hydroxyvitamin D3-24-hydroxylase activities. The enzyme switch-over response could be prompted by 1.6 × 10?7 M 1,25-dihydroxyvitamin D3 and occurred within 6 h following treatment. Medium calcium appeared to augment the metabolite's switch-over action.  相似文献   

7.
A synthesis of radiochemically pure 25-hydroxy[26,27-3H]vitamin D3 with a specific activity of 160 Ci/mmol is reported. The structure and biological activity of the radiolabeled compound was verified by comigration on high-pressure liquid chromatography with synthetic 25-hydroxyvitamin D3 to constant specific activity, and by conversion in vitro to 1α,25-dihydroxy[26,27-3H]vitamin D3 with the chick kidney 1α-hydroxylase.  相似文献   

8.
The activity of renal 25-hydroxyvitamin D3(25-OH-D3)-1α- and 24-hydroxylase and the plasma concentrations of vitamin D metabolites were investigated in relation to the ovulatory cycle in egg-laying hens. The time after ovulation was estimated from the position of the egg in the oviduct and the dry weight of the egg-shell. The invitro renal 25-OH-D3-1α-hydroxylase activity was significantly enhanced 14–16 hr after ovulation, whereas 25-OH-D3-24-hydroxylase activity remained unchanged. The plasma level of 1α,25-dihydroxyvitamin D [1α,25-(OH)2-D] was also increased 14–16 hr after ovulation in accord with the enhancement of the renal 1α-hydroxylase activity. The plasma level of 24,25-dihydroxyvitamin D did not change during the ovulatory cycle. These results strongly suggest that 1α,25-(OH)2-D3 production in the kidney varies in a circadian rhythm during the ovulatory cycle in egg-laying hens.  相似文献   

9.
A competitive protein-binding radioassay for 24,25-dihydroxyvitamin D [24,25-(OH)2D] in human serum has been developed. Whereas small amounts of [3H]24,25-(OH)2D must be biosynthesized in order to trace the efficiency of the extraction and chromatographic procedures, tritiated 25-hydroxyvitamin D3 ([3H]25-OHD3) can be used as the assay tracer. Since 25-OHD3 and 24,25-(OH)2D3 are equipotent in their competitive displacement of [3H]25-OHD3 from rat serum, 25-OHD3 can be used as the assay standard. Liquid-gel partition chromatography on small columns of Sephadex LH-20 can reliably isolate 24,25-(OH)2D by batch elution. The purity of biosynthesized [3H]24,25-(OH)2D3 and the 24,25-(OH)2D fraction isolated from serum was confirmed by high-pressure chromatography on 0.2 × 50 cm columns of 10-μm silica. Serum 24,25-(OH)2D levels averaged 16% of the serum 25-OHD concentrations in normal subjects. Since chronic hemodialysis patients, without kidneys, had normal serum 24,25-(OH)2D levels, significant extrarenal 25-hydroxycalciferol 24-hydroxylase activity occurs in these subjects. Since the present assay represents a reasonably simple extension of 25-OHD assay methodology, it should prove to be a useful technique in the analysis of clinical disorders of vitamin D metabolism.  相似文献   

10.
Homogenates of kidney from laying Japanese quail incubated in vitro with 25-hydroxy-[26,27-3H] vitamin D3 produce more 1,25-dihydroxy-[26,27-3H]vitamin D3 than do homogenates of kidney from mature nonlaying females or males maintained on the same diet and under identical conditions. Instead, the homogenates from male quail or nonlaying female quail convert 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. The administration of 5 mg of estradiol to mature male quail 24 h prior to sacrifice suppressed the 25-hydroxyvitamin D3-24-hydroxylase and markedly stimulated 25-hydroxyvitamin D3-1-hydroxylase. The administration of estradiol to male quail caused hypercalcemia, which responded more slowly than did the 1-hydroxylase. As little as 0.1 mg of estradiol/quail was found effective in stimulating the 1-hydroxylase and suppressing the 24-hydroxylase. Other hormones such as follicle stimulating hormone (FSH), cortisone, testosterone, and progesterone, even at high dose levels, produced little or no change in the 25-hydroxyvitamin D3-1-hydroxylase. Testosterone did, however, suppress the 25-hydroxyvitamin D3-24-hydroxylase. The stimulation of the 25-hydroxyvitamin D3-1-hydroxylase by parathyroid hormone was of a smaller magnitude than that of the estradiol, and the effects of the two hormones were additive, suggesting that they function by a different mechanism.  相似文献   

11.
25-Hydroxyvitamin D3 1α-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3, a vitamin D receptor ligand. 25-Hydroxyvitamin D3 has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1α-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D3 has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D3 internalisation, in Cyp27b1?/? cells explains their higher sensitivity to 25-hydroxyvitamin D3. 25-Hydroxyvitamin D3 action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D3. Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D3 in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D3 with 1α,25-dihydroxyvitamin D3 in Cyp27b1?/? cells further demonstrates the agonistic action of 25-hydroxyvitamin D3 and suggests that a synergism between 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 might be physiologically important. In conclusion, 25-hydroxyvitamin D3 is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.  相似文献   

12.
Sebocytes are sebum-producing cells that form the sebaceous glands. We investigated the role of sebocytes as target cells for vitamin D metabolites and the existence of an enzymatic machinery for the local synthesis and metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3, calcitriol], the biologically active vitamin D metabolite, in these cell types. Expression of vitamin D receptor (VDR), vitamin D-25-hydroxylase (25OHase), 25-hydroxyvitamin D-1α-hydroxylase (1αOHase), and 1,25-dihydroxyvitamin D-24-hydroxylase (24OHase) was detected in SZ95 sebocytes in vitro using real time quantitative polymerase chain reaction. Splice variants of 1αOHase were identified by nested touchdown polymerase chain reaction. We demonstrated that incubation of SZ95 sebocytes with 1,25(OH)2D3 resulted in a cell culture condition-, time-, and dose-dependent modulation of cell proliferation, cell cycle regulation, lipid content and interleukin-6/interleukin-8 secretion in vitro. RNA expression of VDR and 24OHase was upregulated along with vitamin D analogue treatment. Although several other splice variants of 1αOHase were detected, our findings indicate that the full length product represents the major 1αOHase gene product in SZ95 cells. In conclusion, SZ95 sebocytes express VDR and the enzymatic machinery to synthesize and metabolize biologically active vitamin D analogues. Sebocytes represent target cells for biologically active metabolites. Our findings indicate that the vitamin D endocrine system is of high importance for sebocyte function and physiology. We conclude that sebaceous glands represent potential targets for therapy with vitamin D analogues or for pharmacological modulation of 1,25(OH)2D3 synthesis/metabolism.  相似文献   

13.
The regulated production of 1α,25-dihydroxyvitamin D3 by the renal enzyme 25-hydroxyvitamin D3-1α-hydroxylase is known to be positively related to the calcium needs of the chick. The activity of this enzyme is now shown to exhibit a circadian-like rhythmicity with peak periods occurring every 20–26 hours. This rhythmicity in activity appears to be affected by the external light/dark cycle to which the birds are exposed.  相似文献   

14.
Inhibition of vitamin D metabolism by ethane-1-hydroxyl-1, 1-diphosphonate   总被引:1,自引:0,他引:1  
The administration of disodium-ethane-1-hydroxy-1,1-diphosphonate (20 mg/kg body weight subcutaneously) to chicks given adequate amounts of vitamin D3 causes a hypercalcemia, inhibits bone mineralization, and inhibits intestinal calcium transport. The administration of 1,25-dihydroxyvitamin D3, a metabolically active form of vitamin D3, restores intestinal calcium absorption to normal but does not restore bone mineralization in disodium-ethane-1-hydroxy-1,1-diphosphonate-treated chicks. In rachitic chicks, the disodium-ethane-1-hydroxy-1,1-diphosphonate treatment does not further reduce the low intestinal calcium transport values while it nevertheless further reduces bone ash levels and increases serum calcium concentration.These observations prompted a more detailed study of the relationship between disodium-ethane-1-hydroxy-1,1-diphosphonate treatment and vitamin D metabolism. A study of the hydroxylation of 25-hydroxyvitamin D3 in an in vitro system employing kidney mitochondria from chicks receiving disodium-ethane-1-hydroxy-1,1-diphosphonate treatment demonstrates a marked decrease in 1,25-dihydroxyvitamin D3 production and a marked increase in the 24,25-dihydroxyvitamin D3 production. In addition, the in vivo metabolism of 25-hydroxy-[26,27-3H]vitamin D3 in disodium-ethane-1-hydroxy-1,1-diphosphonate treated chicks supports the in vitro observations. In rachitic chicks the disodium-ethane-1-hydroxy-1,1-diphosphonate treatment markedly reduces the 25-hydroxyvitamin D3-1-hydroxylase activity of kidney, but does not increase the 25-hydroxyvitamin D3-24-hydroxylase.These results provide strong evidence that large doses of disodium-ethane-1-hydroxy-1,1-diphosphonate produce a marked effect on calcium metabolism via alterations in the metabolism of vitamin D as well as the expected direct effect on the bone.  相似文献   

15.
1α-Hydroxyvitamin D-3 25-hydroxylase activity was measured in subcellular fractions of rat and human liver. The formation of 1,25-dihydroxyvitamin D-3 was determined by high pressure liquid chromatography. In rat liver 1α-hydroxyvitamin D-3 25-hydroxylase activities were found in the purified nuclei, the heavy mitochondrial fraction and the microsomal fraction. The enrichment of 25-hydroxylase activity was highest in the heavy mitochondrial fraction. With this fraction a minimum amount (about 0.5 mg) of protein was required before formation of 1,25-dihydroxyvitamin D-3 could be detected. Above this amount the reaction was linear with amount of protein up to at least 2 mg/ml. The reaction was also linear with time up to 60 min. An apparent Km value of 2·10?5 M was found. The mitochondrial 25-hydroxylase was stimulated by addition of cytosolic protein or bovine serum albumin. The degree of stimulation was dependent on the amount of mitochondrial protein present in the incubation mixture. Maximal stimulation was seen with 0.2 mg/ml of either protein in the presence of 0.5 mg mitochondrial protein. The stimulating effect remained after heating the protein for 5 min at 100°C. The cytosolic protein did not stimulate a reconstituted mitochondrial 1α-hydroxyvitamin D-3 25-hydroxylase. The mitochondrial vitamin D-3 25-hydroxylase was inhibited both by cytosolic protein and by bovine serum albumin. Human liver revealed only one 1α-hydroxyvitamin D-3 25-hydroxylase activity located to the heavy mitochondrial fraction. The results are in agreement with previous studies on the localization of vitamin D-3 25-hydroxylase in rat and human liver. The difference in localization of the 25-hydroxylase between rat and human liver implies that studies on the regulation of the microsomal 25-hydroxylase in rat liver may not be relevant to the situation in human liver.  相似文献   

16.
Both a 25-hydroxylation and a 1α-hydroxylation are necessary for the conversion of vitamin D3 into the calcium-regulating hormone 1α,25-dihydroxyvitamin D3. According to current knowledge, the hepatic mitochondrial cytochrome P450 (CYP) 27A and microsomal CYP2D25 are able to catalyze the former bioactivation step. Substantial 25-hydroxylase activity has also been demonstrated in kidney. This paper describes the molecular cloning and characterization of a microsomal vitamin D3 25- and 1α-hydroxylase in kidney. The enzyme purified from pig kidney and the recombinant enzyme expressed in COS cells catalyzed 25-hydroxylation of vitamin D3 and 1α-hydroxyvitamin D3 and, in addition, 1α-hydroxylation of 25-hydroxyvitamin D3. The cDNA encodes a protein of 500 amino acids. Both the DNA sequence and the deduced peptide sequence of the renal enzyme are homologous with those of the hepatic vitamin D3 25-hydroxylase CYP2D25. Genomic Southern blot analysis suggested the presence of a single gene for CYP2D25 in the pig. Immunohistochemistry experiments indicated that CYP2D25 is expressed almost exclusively in the cells of cortical proximal tubules. The expression of CYP2D25 in kidney, but not in liver, was much higher in the adult pig than in the newborn. These findings indicate a tissue-specific developmental regulation of CYP2D25. The results from the current and previous studies on renal vitamin D hydroxylations imply that CYP2D25 has a biological role in kidney.  相似文献   

17.
To elucidate whether PTH(7-84), a degradation product of PTH(1-84), which inhibits PTH(1-84)-induced bone resorption, also exerts an antagonistic effect on the kidney, we studied the effect of PTH(7-84) on PTH(1-34)-induced production of 1,25-(OH)2D3 in primary cultured murine renal tubules.Neonatal mouse renal tubules cultured in serum-free MEM for 7 days were treated with PTH(1-34) and/or PTH(7-84). Three hours after addition of 25-OHD3 (10−6 M), 1,25-(OH)2D3 was determined. PTH(1-34) stimulated the conversion of 25-OHD3 to 1,25-(OH)2D3, and PTH(7-84) dose-dependently inhibited this process. Real-time PCR revealed that PTH(1-34) increased the expression level of 1α-hydroxylase mRNA, whereas PTH(7-84) did not affect the expression level 1α or 24-hydroxylase mRNA.These in vitro data suggest that PTH(7-84) elicits an antagonistic effect in renal tubules through receptors different from the type I PTH/PTHrP receptor. This may at least partly account for the decreased serum level of 1,25-(OH)2D in patients with severe primary hyperparathyroidism with renal failure.  相似文献   

18.
Renal mitochondrial 25-hydroxyvitamin D3-1-hydroxylase (1-hydroxylase) is sensitive to inhibition by 2 × 10?5m calcium and 5 × 10?3m phosphate when hydroxylation is supported by either malate or NADPH. This sensitivity to ion inhibition is observed in mitochondria from both vitamin D-deficient and repleted chicks and remains when mitochondria are frozen and thawed or are incubated in a hypotonic medium. The ionophore A23187 inhibits the 1-hydroxylase but partially reverses the inhibition exerted by 2, 5, or 7.5 × 10?5m calcium. Addition of a kidney soluble cell fraction (37,000g supernatant) to isolated mitochondria did not enhance the 1-hydroxylase activity under conditions of varied substrate concentration, osmolarity of the incubation medium, or mitochondrial washes. It is concluded that a soluble cellular component is not involved in the regulation of the 1-hydroxylase but that intramitochondrial calcium and phosphate may well play a role in its regulation.  相似文献   

19.
Vertebrate ferredoxin is non-heme iron-sulfur protein found in steroideogenic tissues that serves as an electron shuttle in mitochondrial mixed function oxidase systems such as the 25-hydroxyvitamin D3-1α-hydroxylase. A 2530-bp chick kidney ferredoxin cDNA was cloned, and the association between ferredoxin mRNA levels and the regulation of 1α-hydroxylase activity by vitamin D status was examined. The cDNA sequence indicates that the chick kidney mitochondrial mixed function oxidases use the same ferredoxin as do those in the chick testis and that the chick ferredoxin shares greater than 92% amino acid homology with mammalian ferredoxins. Southern blot analysis of genomic DNA indicates that there is a single copy of the ferredoxin gene present in the chick genome. Three species of mRNA, 1.8, 3.5 and 5.5 kb, were identified by Northern analysis. Slot blot analysis of poly A+ RNA from kidneys of vitamin D-deficient or -replete chicks indicates a 40% induction of ferredoxin message levels in the vitamin D-deficient chick kidney. This suggests that gene regulation of ferredoxin may be part of the mechanism of regulation for 25-hydroxyvitamin D3-1α-hydroxylase activity in the chick kidney.  相似文献   

20.
The biological activity of 1α-hydroxyvitamin D2 has been determined in vitamin D-deficient rats. In the calcification of the rachitic epiphyseal plate, 1α-hydroxyvitamin D2 is more active than 25-hydroxyvitamin D3, while it is equally active in stimulating intestinal calcium absorption. On the other hand, it is much less active (one-third to one-fifth) than 25-hydroxyvitamin D3 in the mobilization of calcium from bone. In both the intestinal and bone responses, 1α-hydroxyvitamin D2 (312 pmol) is active in nephrectomized rats while 25-hydroxyvitamin D3 is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号