首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reduction kinetics of P700 following a short flash are measured in spinach chloroplasts after oxidation of the electron carriers between the two photoreactions by far-red light. Three features of the kinetics allow us to localize simultaneously inhibition at different sites between photoreaction II and the reducing site of plastoquinol. These are the initial lag, the halftime, and the area under the transient of the P700 absorbance change, which indicate the electron transfer time from photoreaction II to the reducing site of plastoquinol, the rate of plastoquinol oxidation, and the number of electrons transferred to the special plastoquinone B functioning as secondary electron acceptor of photosystem II, respectively. As an additional diagnostic parameter for inhibition before and after the plastoquinone pool, the area under the transient of the P700 absorbance change is used after long flashes. This area is proportional to the amount of reduced plastoquinone as shown by the absorbance change at 265 nm. The effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) are compared with those of 2-bromo-4-nitrothymol, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, and Illoxan as representatives for new classes of inhibitors. While 2-halogeno-4-nitrothymols inhibit the reduction of plastoquinone similarly to DCMU, their diphenyl ether derivatives inhibit selectively the oxidation of plastoquinol.  相似文献   

3.
The effects of local anesthetics on photosynthetic activity of pea chloroplasts were investigated in order to elucidate the role of Ca2+ in photosynthetic electron transport. Dibucaine, benzocaine and tetracaine were found to inhibit the O2-evolving activity. The inhibitory effect decreases in the order dibucaine greater than benzocaine greater than tetracaine greater than trimecaine similarly as does the potency to inhibit propagation of excitation in nerve fibre. As demonstrated in experiments with artificial donors and acceptors, the site of inhibition is the water-splitting site of PSII. The inhibitory power of the anesthetics grows with increasing ionic strength of the incubating mixture (by adding NaCl or MgCl2) and with pH; this is explained by occurrence of the neutral form of amine. At low concentrations the charged anesthetic acts as a protonofore; however, the inactivation of water splitting is not due to the protonophoric effect. The incubation is followed by the disappearance of ESR signal IIs. The role of Ca2+ and Ca2+-binding protein in PSII electron transport and its localization are discussed.  相似文献   

4.
5.
Various partial redox reactions involved in photosynthetic electron transport were studied in relation to the electron transport dependent incorporation of the water soluble chemical modifier, diazonium benzene sulfonic acid (DABS)* into chloroplast membranes. This electron transport dependent diazonium incorporation reflects a conformational change (unspecified at this time) in membrane components. The redox reaction(s) responsible for this conformational change was shown to be localized after the site of DCMU inhibition but before plastoquinone by the following evidence:
  1. Electron transport from water to lipophilic “Class III” electron acceptors such as dimethyl benzoquinone and high concentrations of dibromothymoquinone potentiate the extra DABS binding to the membranes. These compounds are reduced prior to or at the plastoquinone site.
  2. Electron transfer from water to silicomolybdate plus ferricyanide, a DCMU insensitive reaction, does not result in the incremental diazonium binding.
  3. Photosystem I cyclic electron flow mediated by menadione (anaerobic), which requires participation of plastoquinone does not give the extra diazonium binding.
The exact redox step responsible for the conformational change is not known for certain, but there is a possibility that cytochrome b-559 may be involved. This is suggested by the observation that diazonium treatment of chloroplasts during illumination but not in darkness, causes the conversion of cytochrome b-559 from the high potential form to the low potential form.  相似文献   

6.
Mild extraction of lyophilized chloroplasts with hexane eliminatedHill activity with 2,6-dichlorophenolindophenol (DCIP) as anelectron acceptor, and most of the activity was restored byreconstitution with plastoquinone A. The same extraction didnot affect the activity of Photosystem II, determined by thephotoreduction of DCIP supported with an artificial electrondoneor, 1,5-diphenylcarbazied. The fluorescence yield changesof extracted chloroplasts indicated that the electron transportchain between Photosystems I and II was also blocked. The resultssuggest that plastoquinone functions at both sides of PhotosystemII; at the reductive side it acts as an electron carrier, andat the oxidative side as a structural element of the thylakoidmembrance necessary for a component to be active in the oxygen-evolutionsystem. (Received August 22, 1973; )  相似文献   

7.
The prior treatment of thylakoids with cyanide (30 mM) was shown to inhibit plastocyanin-dependent electron transport reactions. We find that cyanide inhibition of electron flow from either water or diaminodurene to methyl viologen, but not from water to ferricyanide, is partially reversed when the thylakoids are collected by centrifugation and resuspended in a cyanide-free medium. However, methyl viologen reduction in thylakoids pretreated with cyanide is sensitive to cyanide (~1 mM) added to the reaction mixtures, whereas that in control thylakoids is unaffected. The cyanide must be added in the dark. Electron transport to methyl viologen in chloroplasts pretreated with cyanide is also sensitive to inhibition by EDTA and bathocuproine sulfonate. Thus, KCN inhibition of electron transport in thylakoids is partially reversible. Moreover, the accessibility of plastocyanin to various reagents is probably altered by the KCN treatment.  相似文献   

8.
Chelator-sensitive in chloroplast electron transport   总被引:2,自引:0,他引:2  
The effect of various chelators (orthophenanthroline, bathophen-anthroline, bathophenanthroline sulfonate and bathocuproine) on electron transport of spinach chloroplasts has been studied by means of various photosystem I and II reactions. It was found that photosystem II has at least 3 chelator-sensitive sites, photosystem I from 3–4. An uncoupler-affected site was found in each photosystem. In addition, photosystem I had a stimulator site and a soak site. The soak site was sensitive to chelators only after a period of incubation with the chelator.  相似文献   

9.
In chloroplasts, tetramethyl-p-hydroquinone supports high rates of phosphorylation-coupled, noncyclic electron flow through Photosystem I to methylviologen. The reaction is totally sensitive to dibromothymoquinone, indicating an electron donation to the plastoquinone region of the photosynthetic chain. The uncoupled electron flow rate exceeds 1000 μequivalents per hour per mg chlorophyll. The phosphorylation efficiency (Pe2) at the optimal pH of 8 is 0.6–0.65. Presumably this ratio represents the efficiency of energy coupling in the electron transfer step plastoquinone → cytochrome f.  相似文献   

10.

1. 1. A relaxation spectrophotometer was employed to measure the effects of trypsin treatment on electron transport in both cyclic and non-cyclic chloroplast reactions. The parameters measured were electron flow rate through P700 (flux) and the time constant for dark reduction of P700.

2. 2. In the reduction of methyl viologen by the ascorbate-2,6-dichlorophenol-indophenol (DCIP) donor couple, there was no effect of trypsin on P700 flux or on the time constant for dark reduction of P700. In the phenazine methosulfate (PMS) cyclic system, trypsin had either a slightly stimulatory or slightly inhibitory effect on the P700 flux, depending on the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU): either effect being marginal compared to trypsin effects on Photosystem II.With both ferricyanide and methyl viologen reduction from water, trypsin treament gave a first order decline in P700 flux: which matched the trypsin-induced decline in electron transport with the water to DCIP system, measured by dye reduction. This implies that Photosystem II is inhibited. The inhibition of Photosystem II was up to 90% with a 6–10-min trypsin treatment. This result is consistent with the concept of Photosystem I (P700) being in series with Photosystem II in the electron transfer sequence.

3. 3. Cyclic phosphorylation was severely inhibited (85%) by trypsin treatment which had a somewhat stimulatory effect on P700 flux, indicating uncoupling. Non-cyclic phosphorylation was uncoupled as well as electron flow being inhibited since the P/2e ratio decreased more rapidly as a function of trypsin incubation time than inhibition of electron flow. The two effects, uncoupling and non-cyclic electron flow inhibition, are separate actions of trypsin. It is probably that the uncoupling action of trypsin is due to attack on the coupling factor protein, known to be exposed on the outer surface of thylakoids.

4. 4. Trypsin treatment caused an increase in the rate constant, kd, for the dark H+ efflux, resulting in a decreased steady state level of proton accumulation. The increased proton efflux and the inhibition of phosphorylation are consistent with an uncoupling effect on trypsin.

5. 5. Trypsin treatment did not reduce the manganese content of chloroplasts: as reported by others, Tris washing did remove about 30% of the chloroplast manganese.

6. 6. Electron micrographs of both negatively stained and thin-sectioned preparations showed that, under these conditions, trypsin does not cause a general breakdown of chloroplast lamellae. Inhibition by trypsin must therefore result from attacks on a few specific sites.

7. 7. Both System II inhibition and uncoupling occur rapidly when trypsin treatment is carried out in dilute buffer, a condition which leads to thylakoid unstacking, but both are prevented by the presence of 0.3 M sucrose and 0.1 M KCl, a condition that helps maintain stacked thylakoids. Evidently vulnerability to trypsin requires separation of thylakoids.

8. 8. Since trypsin does not appear to disrupt thylakoids nor prevent their normal aggregation in high sucrose-salt medium and since the trypsin molecule is probably impermeable, it is probable that the site(s) of trypsin attack in System II are exposed on the outer thylakoid surface.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; PMS, phenazine methosulfate; Tricine, N-tris(hydroxymethyl)methylglycine; MES, 2-(N-morpholino)ethanesulfonic acid; DCMU, (3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   


11.
12.
Wolfgang Haehnel 《BBA》1982,682(2):245-257
Signal I, the EPR signal of P-700, induced by long flashes as well as the rate of linear electron transport are investigated at partial inhibition of electron transport in chloroplasts. Inhibition of plastoquinol oxidation by dibromothymoquinone and bathophenanthroline, inhibition of plastocyanin by KCN and HgCl2, and inhibition by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide are used to study a possible electron exchange between electron-transport chains after plastoquinone. (1) At partial inhibition of plastocyanin the reduction kinetics of P-700+ show a fast component comparable to that in control chloroplasts and a new slow component. The slow component indicates P-700+ which is not accessible to residual active plastocyanin under these conditions. We conclude that P-700 is reduced via complexed plastocyanin. (2) The rate of linear electron transport at continuous illumination decreases immediately when increasing amounts of plastocyanin are inhibited by KCN incubation. This is not consistent with an oxidation of cytochrome f by a mobile pool of plastocyanin with respect to the reaction rates of plastocyanin being more than an order of magnitude faster than the rate-limiting step of linear electron transport. It is evidence for a complex between the cytochrome b6 - f complex and plastocyanin. The number of these complexes with active plastocyanin is concluded to control the rate-limiting plastoquinol oxidation. (3) Partial inhibition of the electron transfer between plastoquinone and cytochrome f by dibromothymoquinone and bathophenanthroline causes decelerated monophasic reduction of total P-700+. The P-700 kinetics indicate an electron transfer from the cytochrome b6 - f complex to more than ten Photosystem I reaction center complexes. This cooperation is concluded to occur by lateral diffusion of both complexes in the membrane. (4) The proposed functional organization of electron transport from plastoquinone to P-700 in situ is supported by further kinetic details and is discussed in terms of the spatial distribution of the electron carriers in the thylakoid membrane.  相似文献   

13.
The macrocyclic polyethers dibenzo-18-crown-6 (XXVIII) and dicyclohexyl-18-crown-6 (XXXI) inhibit the valinomycin-mediated K+ accumulation energized by glutamate, -ketoglutarate, malate plus pyruvate or isocitrate but not that promoted by succinate, ascorbate plus TMPD or ATP. The polyethers inhibit the oxidation of the former group of substrates without preventing either the oxidation of succinate or ascorbate plus TMPD or the hydrolysis of ATP.The substrate oxidation inhibited by the macrocyclic polyethers is relieved in intact mitochondria by increasing the concentration of K+ in the medium. It is also completely reverted by supplementing the medium with valinomycin, Cs+ and phosphate, or else by the addition of vitamin K3.In submitochondrial sonic particles the macrocyclic polyethers inhibit the oxidation of NADH as well as the ATP-driven reversal of electron flow at the site I of the electron transport chain. They also block the oxidation of NADH in non-phosphorylating Keilin-Hartree particles as well as in Hatefi's NADH-coenzyme Q reductase. The polyethers do not inhibit electron transport in mitochondria from the yeast which lack the first coupling site.The inhibition of electron transport by the polyethers do not require of the addition of alkali metal cations such as K+ in intact mitochondria or other membrane preparations.It is established that the macrocyclic polyethers XXVIII and XXXI, already characterized as mobile carrier molecules for K+ in model lipid membranes, inhibit electron transport at site I of the electron transport chain from mitochondrial membranes.It is suggested that the ability of the polyethers to coordinate alkali metal cations in aqueous versus lipid environments, but not K+ transportper se, is related to their rotenone-like induced inhibition of electron flow in mitochondrial membranes.Supported in part by a Grant from the Research Corporation.  相似文献   

14.
15.
The herbicides trifluralin (alpha,alpha,alpha-trifluoro-2,6-dinitro-N, N-dipropyl-p-toluidine) and diallate (S-[2,3-dichloroallyl] diisopropylthiocarbamate) inhibit electron transport, ATP synthesis, and cytochrome f reduction by isolated spinach (Spinacia oleracea L.) chloroplasts. Both compounds inhibit noncyclic electron transport from H(2)O to ferricyanide more than 90% in coupled chloroplasts at concentrations less than 50 mum. Neither herbicide inhibits electron transport in assays utilizing only photosystem I activity, and the photosystem II reaction elicited by addition of oxidized p-phenylenediamine or 2,5-dimethylquinone is only partially inhibited by herbicide concentrations which block electron flow from H(2)O to ferricyanide. Inhibition of ATP synthesis parallels inhibition of electron flow in all noncyclic assay systems, and cyclic ATP synthesis catalyzed by either diaminodurene or phenazine metho-sulfate is susceptible to inhibition by both herbicides. These results indicate that trifluralin and diallate both inhibit electron flow in isolated chloroplasts at a point in the electron transport chain between the two photosystems.  相似文献   

16.
The stability and stabilization of the electron transport system of chloroplast membranes under physiological conditions of temperature and illumination were studied in relation to two separate and often competing mechanisms of decay. Photochemical inactivation (photoinhibition) of the electron transport system of ageing spinach chloroplasts was not normally found to limit stability even at saturating light intensities. Only when the membranes were protected from dark (fatty acid) inhibition did photoinhibition limit stability.Electron transport could be partially protected from dark inhibition by the addition of high concentrations of recrystallized (i.e. fatty acid free) bovine serum albumin, ovalbumin, polyethyleneimine cellulose, Biomesh SM2 beads or with Ficoll 400. Some improvement in stability was achieved with N,N, dimethylphenethylamine but other esterase and phospholipase inhibitors were ineffective in preventing thermal inactivation.Photoinhibition was apparently delayed by phenazine methosulphate under certain conditions but was unaffected either by artificial scavengers of reactive oxygen species (butylated hydroxytoluene), and 1,4-diazobycyclo (2, 2, 2 octane) or by natural scavengers which constitute part of the in vivo protective mechanism (-tocopherol, -carotene, SOD, catalase and glutathione) or by anaerobic incubation. Photoinhibition may therefore be by a separate mechanism which does not initially involve free radical damage.Abbreviations BHA butylated hydroxyanisole - SOD superoxide dismutase - 03 7 superoxide anion - 01 2 singlet molecular oxygen - MDA malondialdehyde - BHT butylated hydroxytoluene - DABCO 1,4-diazobicyclo (2, 2, 2) octane - PMS phenazine methosulphate - BSA bovine serum albumin - photosystem I, (II) PSI (PSII) - DMSO Dimethyl Sulphoxide - DCPIP 2,6, dichlorophenol indophenol - DBM1B 2,5, dibromo-3-methyl-6-isopropyl-p-benzoquinone  相似文献   

17.
Bharati A  Kar M  Sabat SC 《PloS one》2012,7(6):e38942
Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B); the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.  相似文献   

18.
In addition to linear electron transport from water to NADP+, alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport‐dependent PQ reduction and PTOX‐dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2‐2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2‐2 pgr5 double mutant. This was accompanied by partial suppression of stromal over‐reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.  相似文献   

19.
20.
The oxidation of the PQ-pool after illumination with 50 or 500 micromol quantam(-2)s(-1) was measured in isolated thylakoids as the increase in DeltaA(263), i.e., as the appearance of PQ. While it was not observed under anaerobic conditions, under aerobic conditions it was biphasic. The first faster phase constituted 26% or 44% of total reappearance of PQ, after weak or strong light respectively. The dependence on oxygen presence as well as the correlation with the rate of oxygen consumption led to conclusion that this phase represents the appearance of PQ from PQ(*-) produced in the course of PQH(2) oxidation by superoxide accumulated in the light within the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号