首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the binding of carbon monoxide to human hemoglobin and to ferrous horseradish peroxidase (HRP) have been studied by flash photolysis in mixtures of glycerol and water over a wide range of temperature and solvent viscosities. This was done in order that the influence of diffusion-control on the association rates could be determined. The binding of CO to HRP which is much slower than binding to Hb was devoid of diffusion effects. By contrast, the fast and slow phases of binding to Hb in the high viscosity solvents both displayed curved Arrhenius plots, consistent with a change from a chemical activationcontrolled process in the high temperature region to a diffusion-controlled process in the low temperature region. Analyses of the curved Arrhenius plots indicated that in the low temperature diffusion-controlled region, the activation enthalpy is similar to the activation energy of viscosity of the solvent, as might be expected for a diffusion-controlled reaction.Curve fitting of rate-temperature-viscosity data, assuming simultaneous chemical activation and diffusion-control, yielded factors by which the diffusion rate constants differ from that for reaction between uniformly reactive spheres of equal radii. For the fast Hb reaction, observed upon partial photolysis, this factor varies from 0.02 to 1.1, depending upon the solvent composition. For the slow Hb reaction, observed upon higher degrees of photolysis, this factor was 0.03 and 0.04. These factors were rationalized in terms of fractional surface reactivities and of a maximum allowable solid angle of entry of reactant to the binding site. It was concluded that the steric hindrance of T-state Hb (slow reaction) is much greater than R-state Hb (fast reaction).  相似文献   

2.
H.J. Harmon  M. Sharrock 《BBA》1978,503(1):56-66
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280°K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a “mixed valency” (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport.It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position.The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

3.
The reaction kinetics of the binding of CO and O2 to hemoglobin (Hb) in human red blood cell (RBC) suspensions have been examined using a 300 ns dye laser to photodissociate HbCO or HbO2. Fast (halftime1?0 μs) and slow (5?ms) processes were seen after photolysis. The results indicate that neither the rate constants nor the activation energies for the binding of CO to the fast reacting form of Hb in the RBC are significantly different from that measured in solution in spite of the different environments. Rate constants determined for O2 binding in RBC were intermediate between rates observed for reaction with fast and slow reacting forms of Hb and probably consist of contributions from each. The slow recombination of CO and O2 probably has contributions both from reaction with slow reacting forms of Hb and from ligand that had diffused away from the RBC after photolysis.  相似文献   

4.
The reactions of molecular oxygen (O2) and nitric oxide (NO) with reduced Thermus thermophilus (Tt) ba3 and bovine heart aa3 were investigated by time-resolved optical absorption spectroscopy to establish possible relationships between the structural diversity of these enzymes and their reaction dynamics. To determine whether the photodissociated carbon monoxide (CO) in the CO flow-flash experiment affects the ligand binding dynamics, we monitored the reactions in the absence and presence of CO using photolabile O2 and NO complexes. The binding of O2/NO to reduced ba3 in the absence of CO occurs with a second-order rate constant of 1 × 109 M? 1 s? 1. This rate is 10-times faster than for the mammalian enzyme, and which is attributed to structural differences in the ligand channels of the two enzymes. Moreover, the O2/NO binding in ba3 is 10-times slower in the presence of the photodissociated CO while the rates are the same for the bovine enzyme. This indicates that the photodissociated CO directly or indirectly impedes O2 and NO access to the active site in Tt ba3, and that traditional CO flow-flash experiments do not accurately reflect the O2 and NO binding kinetics in ba3. We suggest that in ba3 the binding of O2 (NO) to heme a32 + causes rapid dissociation of CO from CuB+ through steric or electronic effects or, alternatively, that the photodissociated CO does not bind to CuB+. These findings indicate that structural differences between Tt ba3 and the bovine aa3 enzyme are tightly linked to mechanistic differences in the functions of these enzymes. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

5.
The reaction of Ru(XTPP)(DMF)2, where XTPP is the dianion of para substituted tetraphenylporphyrins and X is MeO, Me, H, Cl, Br, I, F, with O2 and CO were studied in DMF. The process was found to be first-order in metalloporphyrin, first-order in molecular oxygen and carbon monoxide, and second-order overall. Second-order rate constants for the CO reaction ranged from 0.170 to 0.665 M?1 s?1 at 25°C, those for the O2 reaction from 0.132 to 0.840 M?1 s?1 at 25°C. Similar activation parameters (ΔHCO± = 87 ± 1 kJ mol?1, ΔSCO± = 22 ± 4 JK?1 mol?1; ΔHO2± = 81 ± 1 kJ mol?1, and ΔSO2± = 11 ± 5 JK?1 mol?1) were found within each series. Reactivities of X substituted metalloporphyrins were found to follow different Hammett σ functions. The CO reactions correlated with σ? following normal behavior; the O2 reactions correlated with σ8° indicating O2 is π-bonded in the transition states. A dissociative mechanism is postulated for the process.  相似文献   

6.
The kinetics of CO2 and SO2 uptake by a coordinate ion, cis-[Cr(C2O4)(L-L)(OH2)2]+, where L-L stands for a bidentate sugar ligand, methyl 3-amino-2,3-dideoxy-α-d-arabino-hexopyranoside has been studied, over temperature ranges of 5 - 25 and 5 - 20 °C for CO2 and SO2, respectively. Investigations were carried out using stopped-flow spectrophotometry in the range of 340-700 nm. Results of the kinetic measurements obtained for both gases were compared. The kinetics and mechanisms of the reactions were suggested and ΔH values for both processes were determined.  相似文献   

7.
8.
Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease’s causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli’s nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG#, ΔS#, ΔH#) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH.  相似文献   

9.
The binding mechanism of Streptomyces subtilisin inhibitor and subtilisin BPN′ was studied kinetically with the stopped-flow method by monitoring the protein fluorescence increase due to complex formation. In the lower concentration range of proteins, the reaction followed the second-order kinetics. The pH dependence of the apparent second-order rate constant, kon, suggested the involvement of the two ionizable groups of pKa of 7.8 and 10 in the binding. The activation parameters were calculated from the temperature dependence of the apparent second-order rate constants. The value of the apparent activation energy (EA = 39.7 kJ · mol?1, 9.50 kcal · mol?1) and insensitivity of kon to the viscosity of the medium suggest that the binding is not a simple diffusion-controlled bimolecular association. Further studies with a much broader range of protein concentrations have revealed that the reaction tends to approach first-order kinetics as the inhibitor concentration increases. The binding reaction is, therefore, reconcilable with a two-step mechanism, in which a fast bimolecular association is followed by a slow unimolecular isomerization step; the dissociation constant of the first step, KL, is estimated to be 1.2 × 10?4m and the rate constant of the second step, k+2, to be 770 s?1. It was also found that the increase of tryptophan fluorescence due to the complex formation occurs solely in the rate-determining unimolecular process.  相似文献   

10.
The kinetics of imidazole (Im) and N-methylimidazole (MeIm) binding to oxidized cytochrome (cyt) c1 of detergent-solubilized bc1 complex from Rhodobacter sphaeroides are described. The rate of formation of the cyt c1-Im complex exhibited three separated regions of dependence on the concentration of imidazole: (i) below 8 mm Im, the rate increased with concentration in a parabolic manner; (ii) above 20 mm, the rate leveled off, indicating a rate-limiting conformational step with lifetime ∼1 s; and (iii) at Im concentrations above 100 mm, the rate substantially increased again, also parabolically. In contrast, binding of MeIm followed a simple hyperbolic concentration dependence. The temperature dependences of the binding and release kinetics of Im and MeIm were also measured and revealed very large activation parameters for all reactions. The complex concentration dependence of the Im binding rate is not consistent with the popular model for soluble c-type cytochromes in which exogenous ligand binding is preceded by spontaneous opening of the heme cleft, which becomes rate-limiting at high ligand concentrations. Instead, binding of ligand to the heme is explained by a model in which an initial and superficial binding facilitates access to the heme by disruption of hydrogen-bonded structures in the heme domain. For imidazole, two separate pathways of heme access are indicated by the distinct kinetics at low and high concentration. The structural basis for ligand entry to the heme cleft is discussed.  相似文献   

11.
The binding of indole to both horseradish peroxidase and its cyanide complex can be detected by difference spectra in the Soret region. Indole and cyanide binding are not competitive processes. The effect of indole on the binding rate constants between horseradish peroxidase and cyanide and compound I formation reactions between horseradish peroxidase and hydrogen peroxide or m-chloroperbenzoic acid was studied by the stopped-flow method. In all cases the rate constants of the indole-peroxidase complex with the ligand or substrates were smaller than those of free peroxidase. Since the m-chloroperbenzoic acid reaction has been shown to approach a diffusion-controlled rate, the effect of indole binding on the rate constant for compound I formation using this peracid was analyzed semiquantitatively using theoretical equations for a diffusion-controlled rate process with a capture-window active site model. The effect of indole binding on the diffusion-controlled rate constant could be explained by a decrease in the radius of the capture-window active site.  相似文献   

12.
《Inorganica chimica acta》1988,142(2):291-299
In coordinating solvents, the complex 1, 4, 8, 11- tetramethyl-1, 4, 8, 11-tetraazacyclotetradecane nickel(II) bisperchlorate exists as an equilibrium mixture involving four coordinate R,S,R,S-[Ni(tmc)]2+ and five coordinate R,S,R,S-[Ni(tmc)(solvent)]2+ species. Spectrophotometric measurements of this equilibrium in a number of solvents have been conducted over a range of temperatures and pressures. The stability order for the five coordinate complex in the solvents investigated is CH3CN>DMF>DMSO>C6H5CN> H2O>ClCH2CN at 25 °C. Differences in stability are considered in terms of the measured thermodynamic parameters ΔH° and ΔS°. Both steric and electronic factors were found to influence solvent coordination with the macrocyclic complex.For the equilibrium in CH3CN, C6H5CN, DMF and H2O, reaction volumes, ΔV°, of −3.2±0.5, −4.2±0.5, −0.2±0.5 and −0.5±0.5 cm3 mol−1 respectively have been determined. Each is significantly smaller than the corresponding solvent molar volume. The ΔV° for the equilibrium in CH3CN is comparable with the previously determined activation volume for exchange of this solvent on R, S, R, S- [Ni(tmc)(CH3CN)]2+. The equilibrium and measured volume parameters are discussed in relation to the mechanism for solvent exchange.  相似文献   

13.
The kinetics of the addition reactions of tetracyanoethylene (TCNE) to trans-[Rh(RNC)2(PR′3)2]ClO4, where R = p-CH3OC6H4, p-ClC6H4, and C6H11 and R′ = C6H5 and C6H5O, in acetonitrile, acetone, and tetrahydrofuran (THF) have been investigated employing stopped-flow techniques. The reaction is first order with respect to both complex and TCNE. The reaction rate increases with increasing solvent polarity in the order of THF < acetone < acetonitrile. The activation parameters for the reactions of [RH(p-CH3OC6H4NC)2(PPh3)2]ClO4 in the three solvents were: ΔH*, 7.6, 3.5, 2.2 kcal mol−1; ΔS*, −15.2, −27.7, −28. e.u. The nature of the transition state and ligand effects on the rate of reaction are discussed.  相似文献   

14.
Myoglobin, a small globular heme protein that binds gaseous ligands such asO2, CO and NO reversibly at the heme iron, provides an excellent modelsystem for studying structural and dynamic aspects of protein reactions. Flashphotolysis experiments, performed over wide ranges in time and temperature, reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. Our recent studies of carbonmonoxy-myoglobin (MbCO) mutant L29W, using time-resolved infrared spectroscopy in combination with x-ray crystallography, have correlated kinetic intermediates with photoproduct structures that are characterized by the CO residing in different internal protein cavities, so-called xenon holes. Here we have used Fourier transform infrared temperature derivative spectroscopy (FTIR-TDS) to further examine the role of internal cavities in the dynamics. Different cavities can be accessed by the CO ligands at different temperatures, and characteristic infrared absorption spectra have been obtained for the different locations of the CO ligand within the protein, enabling us to monitor ligand migration through the protein as well as conformational changes of the protein.  相似文献   

15.
The kinetics of the complexation of Ni(II) with 1,10-phenanthroline(phen), 4,7-dimethyl-1,10-phenanthroline(dmphen), and 5-nitro-1,10-phenanthroline(NO2phen) in acetonitrile-water mixed solvents of acetonitrile mole fraction xAN = 0, 0.05, 0.1, 0.2 and 0.3 at 288, 293, 298 and 303 K have been studied by stopped-flow method at ionic strength of 1.0 (NaClO4) and pH 7.4. The corresponding activation enthalpy, entropy, and free energy were determined from the observed rate constants. The complexation of Ni(II) with the three ligands has comparable observed rate constants; in pure water the observed rate constants are (×103 dm3 mol−1 s−1) 2.31, 2.57, and 1.38 for phen, dmphen and NO2phen, respectively. The corresponding activation parameters for the three ligands are, however, considerably different; in pure water the ΔHS (kJ mol−1/J K−1 mol−1) are 44.7/−30.2, 19.5/−114.1, and 32.2/−76.9 for phen, dmphen, and NO2phen, respectively. The effects of solvent composition on the kinetics are also markedly different for the three ligands. The ΔH and ΔS showed a minimum at xAN = 0.1 for phen; for dmphen and NO2phen, however, maxima at xAN = 0.2 were observed. Nevertheless, there is an effective enthalpy-entropy compensation for the ΔHS of all the three ligands, demonstrating the significant effects of the changes in solvation and solvent structure on the complexation kinetics. As the rate-determining step of Ni(II) complexation is the dissociation of a water molecule from Ni(II), the solvent and ligand dependencies in the Ni(II) complexation kinetics are ascribed to the change in solvation status of the ligands and the altered solvent structures upon changing solvent composition.  相似文献   

16.
The temperature dependence for the hydrolysis of both 4-methylumbelliferyl-α-l-fucoside and p-nitrophenyl-α-l-fucoside was determined for purified α-l-fucosidase (EC 3.2.1.51) from human placenta. The inhibition of the enzymatic reaction by l-fucose was also studied using the first of these two substrates at different temperatures. The thermodynamic parameters calculated from the pKm were for the 4-methylumbelliferyl-conjugate ΔF = ?6.6 kcal/mol, ΔH = ?8.5 kcal/mol, and ΔS = ?6.3 e.u. and for the p-nitrophenylconjugate ΔF = ?5.6 kcal/mol, ΔH = ?12.2 kcal/mol, and ΔS = ?21.1 e.u. The thermodynamic parameters for l-fucose were ΔH = ?12.4 kcal/mol and ΔS = ?20.1 e.u. The lower exothermicity and negative entropy calculated for the 4-methylumbelliferyl substrate compared to the thermodynamic parameters calculated for the p-nitrophenyl substrate and l-fucose suggest the existence of a secondary hydrophobic binding site for the 4-methylumbelliferyl moiety on the enzyme. The difference in the enthalpy for both substrates is also reflected in a difference in activation energy, being 15.8 kcal/mol for the 4-methylumbelliferyl substrate and 20.7 kcal/mol for the p-nitrophenyl substrate. From these results it may be concluded that altered kinetic properties of the enzyme could be the result of the binding of the “aglycone” moiety of the fluorogenic substrate to the enzyme.  相似文献   

17.
This study examines the relationship between the DNA binding thermodynamics and the enzymatic activity of the Klenow and Klentaq Pol I DNA polymerases from Escherichia coli and Thermus aquaticus. Both polymerases bind DNA with nanomolar affinity at temperatures down to at least 5 °C, but have lower than 1% enzymatic activity at these lower temperatures. For both polymerases it is found that the temperature of onset of significant enzymatic activity corresponds with the temperature where the enthalpy of binding (ΔHbinding) crosses zero (TH) and becomes favorable (negative). This TH/activity upshift temperature is 15 °C for Klenow and 30 °C for Klentaq. The results indicate that a negative free energy of DNA binding alone is not sufficient to proceed to catalysis, but that the enthalpic versus entropic balance of binding may be a modulator of the temperature dependence of enzymatic function. Analysis of the temperature dependence of the catalytic activity of Klentaq polymerase using expanded Eyring theory yields thermodynamic patterns for ΔG, ΔH, and TΔS that are highly analogous to those commonly observed for direct DNA binding. Eyring analysis also finds a significant ΔCp of formation of the activated complex, which in turn indicates that the temperature of maximal activity, after which incorporation rate slows with increasing temperature, will correspond with the temperature where the activation enthalpy (ΔH) switches from positive to negative.  相似文献   

18.
The time-course kinetics of the cytochrome P-450-catalyzed dealkylations of the exogenous compounds benzphetamine, ethylmorphine, codeine, and 7-ethoxycoumarin were compared to the hydroxylation of the endogenous compound testosterone. Using liver microsomes from phenobarbital-induced rats, the time course of the demethylations of ethylmorphine, codeine, and especially benzphetamine was characterized by a fast initial phase of enzymatic activity and then a steady decline in the rate throughout the remainder of the reaction. In contrast, under the same experimental conditions, both the dealkylation of 7-ethoxycoumarin and the hydroxylation of testosterone showed no initial fast phase of activity and a constant rate of product formation for most of the remainder of the time course. The difference also held for the carbon monoxide inhibition studies in which the degree of inhibition of the demethylation reactions by a variety of CO:O2 mixtures was time dependent, in contrast to the constant, time-independent degree of CO inhibition of the other two reactions. The kinetics of the demethylation reactions could not be explained by enzyme destruction, back reaction, or product adduct formation and were further confirmed by measurements of the rate of O2 utilization and NADPH oxidation. The complexity of the demethylation reaction should be taken into consideration in any detailed studies of the monooxygenation reaction system.  相似文献   

19.
20.
Rate constants and activation parameters (ΔH and ΔS)are reported for the oxidation of ferrocene by the tris-1,10-phenanthrolinecobalt(III) cation in t-butyl alcoholwater and in acetonewater solvent mixtures. Solvent effects on reactivity trends for these systems, for this same reaction in methanolwater mixtures, and for cobalt(II)-catalysed racemisation of Co(phen)33+ in t-butyl alcoholwater solvent mixtures are analysed into initial state and transition state contributions. The dependences of solubilities on solvent composition for ferrocene and for [Co(phen)3](ClO4)3 in methanol, t-butyl alcohol, and acetonewater mixtures are also reported; these results are needed in order to establish solvent effects on the initial states of the reactions studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号