首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The disorganization of grana in spinach chloroplasts and their reconstitution has been studied by varying their ionic environment. Dissociation in low-salt media and reconstitution by added cations (monovalent or divalent) was correlated with the formation in high yield of light or heavy subchloroplast membrane fractions, respectively, produced after digitonin treatment of chloroplasts. The formation of heavy subchloroplast fractions was dependent on cation concentration and reached a plateau at 0.1 m monovalent cation or 0.002 m divalent cation. The cation reconstituted fractions recovered the composition and activities of the respective fractions obtained from control chloroplasts. Cation addition to light subchloroplast fractions isolated from low-salt agranal chloroplasts after digitonin disruption also produced heavy fractions. Divalent cations were more effective than monovalent. The heavy fractions produced were enriched in Chlorophyll b and photosystem II activity while the light fractions were enriched in Chlorophyll a and photosystem I activity. The mechanism by which cations induce formation of heavy subchloroplast fractions is not osmotic. Upon reconstitution, stacking of thylakoids seems to occur at specific membrane binding sites.  相似文献   

2.
We studied the capacity of the thylakoid membrane to form grana stacks in the presence of cations, monovalent or divalent, added to N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine “low-salt” disorganized plastids during their greening. Grana stacking was monitored by the yield of heavy subchloroplast fractions separated by differential centrifugation after digitonin disruption of plastids (J. H. Argyroudi-Akoyunoglou, 1976, Arch. Biochem. Biophys., 176, 267–274). Primary thylakoids of the agranal protochloroplasts formed in periodic light do not show the cation-induced stacking capacity of the mature green chloroplast thylakoids. Similarly, the cation effect saturates at lower cation concentrations in mature chloroplasts than in plastids of the early stages of greening. The capacity for cation-induced stacking and for saturation of the effect at low cation concentrations appears gradually after exposure to continuous light and parallel to the appearance of chlorophyll b and the polypeptides of the 25,000–30,000 molecular weight range of lipid-free thylakoids, probably derived from the chlorophyll b-rich chlorophyll protein Complex II. The thylakoid peripheral stroma proteins ribulosediphosphate carboxylase and the coupling factor protein are not involved in the cation-induced stacking, since their removal (H. Strotmann, H. Hesse, and K. Edelmann, 1973, Biochim. Biophys. Acta, 314, 202–210) does not affect the thylakoid aggregation.  相似文献   

3.
Chloroplast membranes contain a light-harvesting pigment-protein complex (LHC) which binds chlorophylls a and b. A mild trypsin digestion of intact thylakoid membranes has been utilized to specifically alter the apparent molecular weights of polypeptides of this complex. The modified membrane preparations were analyzed for altered functional and structural properties. Cation-induced changes in room temperature fluorescence intensity and low temperature chlorophyll fluorescence emission spectra, and cation regulation of the quantum yield of photosystem I and II partial reactions at limiting light were lost following the trypsin-induced alteration of the LHC. Electron microscopy revealed that cations can neither maintain nor promote grana stacking in membranes which have been subjected to mild trypsin treatment. Freeze-fracture analysis of these membranes showed no significant differences in particle density or average particle size of membrane subunits on the EF fracture face; structural features of the modified lamellae were comparable to membranes which had been unstacked in a “low salt” buffer. Digitonin digestion of trypsin-treated membranes in the presence of cations followed by differential centrifugation resulted in a subchloroplast fractionation pattern similar to that observed when control chloroplasts were detergent treated in cation-free medium. We conclude that: (a) the initial action of trypsin at the thylakoid membrane surface of pea chloroplasts was the specific alteration of the LHC polypeptides, (b) the segment of the LHC polypeptides which was altered by trypsin is necessary for cation-mediated grana stacking and cation regulation of membrane subunit distribution, and (c) cation regulation of excitation energy distribution between photosystem I and II involves the participation of polypeptide segments of the LHC which are exposed at the membrane surface.  相似文献   

4.
《BBA》1986,851(2):322-326
We have used trivalent lanthanide metal cations in the buffering media of pea chloroplasts to probe the stacking arrangement of thylakoid membranes and the spatial distribution of chlorophyll-protein complexes of Photosystems I and II. Measurements of steady-state chlorophyll fluorescence emission spectra of pea chloroplasts at room temperature demonstrate that, within this tripositive valency group, the extent of membrane appression is a function of hydrated metal ionic radius. These results are in agreement with a recent investigation using monovalent and divalent metal cations (Karukstis, K.K. and Sauer, K. (1985) Biochim. Biophys. Acta 806, 374–389). In addition, the lanthanide cation concentration effective in producing the maximum chlorophyll fluorescence intensity upon grana formation is dependent on hydrated ionic size. The current investigation supports the proposed hypothesis that cation screening ability defines the extent of intermembrane separation as well as the extent of lateral distribution of chlorophyll-protein complexes.  相似文献   

5.
Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking.  相似文献   

6.
A Mg2+-induced decrease of the rate of photosystem I (PS I) electron transport (DCIPH2 → methyl viologen) in thylakoids under saturated light intensities has been reported earlier (S. Bose, J. E. Mullet, G. E. Hoch, and C. J. Arntzen, 1981, Photobiochem. Photobiophys.2, 45–52). A similar effect is observed with Na+, although the concentration required for half-maximal inhibition was higher by about two orders of magnitude. The cation effect was gradually abolished as the thylakoids were aged by incubation at 30 °C for 6 h. The loss of cation effect on PS I electron transport rate during aging was parallel to the corresponding loss of cation effect on thylakoid stacking. The cation concentration required for thylakoid stacking and the degree of inhibition as a function of cation concentration correlated strongly with the degree of thylakoid stacking. These observations indicated that the inhibition of the rate of PS I electron transport by cations is a consequence of cation-induced stacking of thylakoid membranes. The observed inhibition of the rate of PS I electron transport is discussed in terms of two hypotheses: (i) a fraction (20–30%) of the PS I complexes is trapped in the appressed region of grana and becomes unavailable to the electron donor (DCIPH2) and (ii) the membrane structure is altered by the cations in such a manner that the rate constant of electron donation by the donor to the electron transport chain in the thylakoid is decreased.  相似文献   

7.
Small particles derived from the digitonin treatment of chloroplast thylakoid membranes in either the stacked (grana-containing) or unstacked condition, as determined by cation concentration, have been used to study the aggregation of thylakoid membranes. At pH values above 5, the small particles from stacked chloroplasts do not aggregate in the presence of Mg2+ or other screening cations at concentrations sufficient to cause the restacking of thylakoids from low-salt chloroplasts. However, the small particles from stacked chloroplasts are aggregated either by lowering the pH to 4.6 or adding the binding cation La3+. In contrast, the small particles obtained on digitonin treatment of unstacked chloroplasts were aggregated by cations at neutral pH. Large particles (mainly grana) derived from digitonin treatment of stacked chloroplasts could not be unstacked by transfer to media of low cation concentration. It is concluded that the nonappressed regions of the chloroplast thylakoid membranes under stacking conditions carry higher than average negative surface charge densities under physiological pH conditions. Transfer of chloroplasts to media of low cation concentration causes a time-dependent lateral redistribution of charge between the appressed and nonappressed regions, but this redistribution is prevented by prior digitonin treatment of stacked chloroplasts.  相似文献   

8.
9.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

10.
The time-resolved chlorophyll fluorescence emission of higher plant chloroplasts monitors the primary processes of photosynthesis and reflects photosynthetic membrane organization. In the present study we compare measurements of the chlorophyll fluorescence decay kinetics of the chlorophyll-b-less chlorina-f2 barley mutant and wild-type barley to investigate the effect of alterations in thylakoid membrane composition on chlorophyll fluorescence. Our analysis characterizes the fluorescence decay of chlorina-f2 barley chloroplasts by three exponential components with lifetimes of approx. 100 ps, 400 ps and 2 ns. The majority of the chlorophyll fluorescence originates in the two faster decay components. Although photo-induced and cation-induced effects on fluorescence yields are evident, the fluorescence lifetimes are independent of the state of the Photosystem-II reaction centers and the degree of grana stacking. Wild-type barley chloroplasts also exhibit three kinetic fluorescence components, but they are distinguished from those of the chlorina-f2 chloroplasts by a slow decay component which displays cation- and photo-induced yield and lifetime changes. A comparison is presented of the kinetic analysis of the chlorina-f2 barley fluorescence to the decay kinetics previously measured for intermittent-light-grown peas (Karukstis, K. and Sauer, K. (1983) Biochim. Biophys. Acta 725, 384–393). We propose that similarities in the fluorescence decay kinetics of both species are a consequence of analogous rearrangements of the thylakoid membrane organization due to the deficiencies present in the light-harvesting chlorophyll ab complex.  相似文献   

11.
We have compared the effects of thylakoid membrane appression by electrostatic screening and by charge neutralization on the room-temperature chlorophyll fluorescence decay kinetics of broken spinach chloroplasts. Monovalent and divalent metal cations induce both a structural differentiation of thylakoid membranes and a lateral segregation of pigment-protein complexes. These phenomena have distinct effects on the F0- and Fmax-level chlorophyll fluorescence decay kinetics at different levels of added cation. We further find specific cation effects, particularly on a 1-2 ns decay component at the Fmax fluorescence level, that are proposed to be related to the effectiveness of electrostatic screening as determined by the hydrated metal ionic radius. Distinct pH-induced effects on chlorophyll fluorescence decay kinetics are associated with the alternative mechanism of electrostatic neutralization to induce membrane stacking. These observations are used to construct a model of chlorophyll fluorescence emission that accounts for the variable kinetics and multiexponential character of the fluorescence decay upon membrane appression.  相似文献   

12.
Low concentrations (~ 3 mm) of salts of monovalent cations such as Na+, K+, and tetraethylammonium were found to decrease the turbidity of chloroplast suspensions. The turbidity changes (Δ540) had the same kinetics, salt concentration dependence, and pH dependence as the monovalent cation-induced decreases in chlorophyll a fluorescence (9), suggesting that structural changes are the cause of the associated increases in spillover. Electron microscopy revealed that the grana are stacked when spillover is inhibited (in the absence of salts or the presence of divalent cations) and that monovalent cations cause the grana to unstack, thereby promoting spillover.  相似文献   

13.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

14.
The ultrastructure and functional parameters of the photosynthetic apparatus in leaves of 14-day-old pea seedlings were studied in conditions of laboratory simulated acid rain (SAR). Pea seedlings were sprayed with an aqueous solution containing NaNO3 (0.2 mM) and Na2SO4 (0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. There was reduction in the efficiency of the photosynthetic electron transport by 25% accompanied by an increase in the quantum yield of thermal dissipation of excess light quanta by 85% without significant change in maximum quantum yield of PSII photochemistry (Fv/Fm). Ultrastructural changes in chloroplasts were revealed by transmission electron microscopy (TEM) 2 days after the SAR treatment of pea leaves. In this case, changes in the structure of the grana and heterogeneity of the thylakoids packing in the granum, namely, an increase in thylakoid intraspace widths and thickness of granal thylakoids compared to the control, were found. It was shown also that carbonic anhydrase activity was significantly inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We hypothesize possible involvement of chloroplast carbonic anhydrase in thylakoid granal structure maintenance. The structural disturbances and the inhibition of photochemical activity of chloroplasts are possible consequences of the carbonic anhydrase inactivation by SAR treatment leading to violation of HCO3 ?–CO2 equilibrium. The data obtained suggest that acid rains negatively affect the photosynthetic apparatus by disrupting the membrane system of the chloroplast.  相似文献   

15.
Acetyl glyceryl ether phosphorylcholine (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine; or platelet activating factor (PAF)), when incubated with chloroplasts or subchloroplast fractions derived from stroma or grana lamellae, induces a drastic increase in the low-temperature fluorescence emission ratio F685/F730 (77 degree K). The molecular structure requirement for the effect to be elicited is the ether bond and a long C chain at the C-1 position of glycerol, a short C chain at C-2 (or the lyso form), and a large polar head at C-3, the potent effector being PAF C-16. The effect is more pronounced in grana-derived fractions. PAF also induces an increase in the chlorophyll alpha fluorescence yield, enhances the association of chlorophyll in the supramolecular pigment-protein complexes of the thylakoid (especially those of Photosystem II), and enhances electron transfer from 1,5-diphenyl carbazide to 2,6-dichlorophenol. These effects are attributed to alteration of the Photosystem II unit organization via the incorporation/intercalation in the grana of the wedge-shaped PAF.  相似文献   

16.
17.
W.S. Chow  J. Barber 《BBA》1980,593(1):149-157
Salt-induced changes in thylakoid stacking and chlorophyll fluorescence do not occur with granal membranes obtained by treatment of stacked thylakoids with digitonin. In contrast to normal untreated thylakoids, digitonin prepared granal membranes remain stacked under all ionic conditions and exhibit a constant high level of chlorophyll fluorescence. However, unstacking of these granal membranes is possible if they are pretreated with either acetic anhydride or linolenic acid.Trypsin treatment of the thylakoids inhibits the salt induced chlorophyll fluorescence and stacking changes but stacking of these treated membranes does occur when the pH is lowered, with the optimum being at about pH 4.5. This type of stacking is due to charge neutralization and does not require the presence of the 2000 dalton fragment of the polypeptide associated with the chlorophyll achlorophyll b light harvesting complex and known to be lost during treatment with trypsin (Mullet, J.E. and Arntzen, C.J. (1980) Biochim. Biophys. Acta 589, 100–117).Using the method of 9-aminoacridine fluorescence quenching it is argued that the surface charge density, on a chlorophyll basis, of unstacked thylakoid membranes is intermediate between digitonin derived granal and stromal membranes, with granal having the lowest value.The results are discussed in terms of the importance of surface negative charges in controlling salt induced chlorophyll fluorescence and thylakoid stacking changes. In particular, emphasis is placed on a model involving lateral diffusion of different types of chlorophyll protein complex within the thylakoid lipid matrix.  相似文献   

18.
We have investigated the influence of chloroplast organization on the nature of chemical reductive titrations of Photosystem II fluorescence decay kinetics in spinach chloroplasts. Structural changes of the chloroplast membrane system were induced by varying the ionic environment of the thylakoids. A single-photon timing system with picosecond resolution monitored the kinetics of the chlorophyll a fluorescence emission. At all ionic concentrations studied, we have observed biphasic potentiometric titration curves of fluorescence yield; these have been interpreted to be suggestive of electron acceptor Q heterogeneity (Karukstis, K.K. and Sauer, K. (1983) Biochim. Biophys. Acta 722, 364–371; Cramer, W.A. and Butler, W.L. (1969) Biochim. Biophys. Acta 172, 503–510). A direct relation is observed between the Em value of the low-potential component of Q and the Mg2+ concentration of the chloroplast suspending medium. We have attributed these midpoint potential variations to the thylakoid structural rearrangements involved in cation-regulated grana stacking. Ionic effects on the fluorescence decay kinetics at the redox transitions are discussed in terms of the heterogeneity of Photosystem II units (α- and β-centers) and the mechanism of deexcitation at a closed reaction center (fluorescence or nonradiative decay).  相似文献   

19.
The plastids of young dark-grown bean leaves, exposed to periodiclight are agranal, devoid of chlorophyll b and contain primarythylakoids and chlorophyll a. Transfer of these plants to continuousillumination results in synthesis of new chlorophyll a, chlorophyllb and grana. This study was done in order to study whether andhow the grana are formed from preexisting primary thylakoids.14C--aminolevulinic acid was used to label the chlorophyll aof the primary thylakoids, and its fate was studied after transferof the plants to continuous light. It was found that chlorophyll b and grana become 14C-labelled.The total radioactivity of chlorophyll b per bean increasedwith the parallel decrease of that of chlorophyll a. All subchloroplastfractions, obtained after digitonin disruption of chloroplasts,contained chlorophyll a of equal specific radioactivity. Thespecific radioactivity of chlorophyll b was lower than thatof chlorophyll a, and, in addition, it was lower in the granathan in the stroma lamellae fraction. The data suggest that chlorophyll b is formed from chlorophylla; the grana are formed by stacking of preexisting primary thylakoids;chlorophyll b is synthesized faster in the grana than the stromalamellae; the newly formed chlorophyll a molecules are distributedat random throughout the developing photosynthetic membraneand not on specific growing sites. (Received April 24, 1976; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号