首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

2.
We have examined hepatic microsomes prepared from phenobarbital-treated animals for the presence of the inducer and found that significant concentrations of the drug remain bound even after a number of washings. The bound drug is at least 70% unmetabolized and interferes with the in vitro binding of ethylmorphine and phenobarbital to the type I binding site but is not bound to the type I site since the Ks is 0.2–6.4 μm whereas the Ks for type I binding of phenobarbital is 103 μm. The high affinity site was not observed in microsomes from control animals either spectrophotometrically or radiometrically. The bound drug can be removed by bovine serum albumin to give a reverse pseudo-type I spectrum with a peak at 412 nm rather than the 425 nm observed for the trough of the typical type I spectrum. These data suggest that induction with phenobarbital may alter the spectral properties of cytochrome P-450 and hence care should be taken in comparing spectral data between microsomes from phenobarbital-treated and control animals.  相似文献   

3.
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s−1) and nicotine (Km = 2.03 mM, kcat = 0.396 s−1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation.  相似文献   

4.
An intraperitoneal dose of CS2 (500mg/kg) to male rats resulted in loss of liver microsomal mixed-function-oxidase activity (85% loss of biphenyl 4-hydroxylase), followed by denaturation of liver cytochrome P-450 to cytochrome P-420, and degradative loss of both cytochromes (50% loss). Losses of NADPH–cytochrome c reductase (20%) and cytochrome b5 were considerably less. Intraperitoneal administration of CS2 (100mg/kg) to rats pretreated wtih phenobarbitone or 3-methylcholanthrene resulted in similar losses, but the rate of destruction was greater with cytochrome P-450 than with cytochrome P-448. At 12h after intraperitoneal injection of CS2 to non-pretreated rats, a new cytochrome (P-448) appeared. Rat liver microsomal preparations incubated with CS2 in the presence of NADPH and O2 resulted in loss of cytochrome P-450 and mixed-function-oxidase activity directly related to the concentration of CS2 (10–100μm) and to the period of incubation. Addition of EDTA (1mm) completely inhibited this destruction of cytochrome P-450 by CS2 in vitro. Addition of CS2 to liver microsomal preparations resulted in moderate increases in the Ks values for type-I or type-II substrates, but these were insufficient to account for the inhibition of the mixed-function oxidases. We therefore suggest that desulphuration of CS2 leads to binding of the S to cytochrome P-450, denaturation of cytochrome P-450 to cytochrome P-420, and ultimately to destruction of these cytochromes by autoxidation.  相似文献   

5.
The R and S enantiomers of 12-hydroxyeicosatetraenoic acid (12-HETE) exhibit different biological activities. Although they appear to be produced by different enzymatic pathways, cytochrome P-450 monooxygenase and lipoxygenase, respectively, they display similar metabolism in both corneal epithelium and neutrophils. In corneal epithelial microsomes, both enantiomers are subject to oxidation and keto reduction reactions to form the dihydro metabolite, 12-hydroxy-5,8,14-eicosatrienoic acid (12-HETrE), via a keto intermediate. The apparent Km for the formation of 12-HETrE was 17.9 and 20 μM for 12(R)-HETE and 12(S)-HETE, respectively, and the apparent Vmax of the reaction was 17.4 and 8.2 pmol/mg per min, respectively. Chiral analysis of the dihydro metabolite demonstrated a product enantiospecificty. Arachidonic acid, 12(R)-HETE, 12(S)-HETE and the intermediate of this reaction, 12-oxo-ETrE, were metabolized predominantly to 12(R)-HETrE in a ratio [12(R)-HETrE: 12(S)-HETrE] of 7.3:1, 4.3:1, 1.5:1 and 2.3:1, respectively. 12(R)-HETrE is a potent vasodilator, chemotactic and angiogenic factor whose synthesis is induced in inflamed tissues; 12(S)HETrE is devoid of these properties. 12(R)-HETE, derived from NADPH-dependent cytochrome P-450 monooxygenases, and 12(S)-HETE, derived from 12-lipoxygenase, may both play an important role in regulating the inflammatory response by serving as substrates for the local synthesis of 12(R)-HETrE.  相似文献   

6.
The cytochrome P-450's of the microsomal mixed function oxidase systems from the rabbit renal cortex, outer medulla, inner medulla, and the liver were compared. Sodium dodecyl sulfate-(SDS) gel electrophoresis and electron paramagnetic resonance (EPR) studies detected cytochrome P-450 proteins in the liver, renal cortex, and outer medulla but not the inner medulla of normal animals. Two cytochrome P-450 peptides, which had molecular weights of 54,500 and 58,900 and which comigrated with known hepatic cytochrome P-450's on SDS gels, were identified in the cortex and outer medulla. Treatment of animals with 3-methylcholanthrene (MC) enhanced the 54,500 and 58,900 peptides in the liver and cortex but produced little change in outer medulla. MC treatment induced faint cytochrome P-450 bands in the inner medulla. The EPR studies detected low spin heme iron absorption lines at g = 2.42, 2.26, and 1.92 in liver, cortex, and outer medulla from untreated animals. The amplitude of the low spin absorption lines was increased by ethanol, a reverse type I compound, and reduced by chloroform, a type I compound, in these tissues. MC treatment increased the amplitude of the heme absorption lines in these tissues, and it induced a barely detectable heme spectrum in the inner medulla. Differences in exogenous substrate binding between hepatic and renal microsomes from MC-treated animals were detected by EPR and optical difference spectroscopy. Acetone, 1-butanol, and 2-propanol gave evidence of binding to the hepatic cytochrome P-450's but no evidence of binding to renal cortical microsomes. These results, along with previous enzymatic studies, suggest that the liver and each area of the kidney contain different substrate specificities and pathways for the metabolism of organic compounds.  相似文献   

7.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

8.
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions.  相似文献   

9.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

10.
R- and S-warfarin metabolite profiles (regio- and stereoselectivity) have been determined with hepatic microsomes from untreated rats and rats treated with nine individual polybrominated biphenyl (PBB) congeners, a commercial mixture of PBBs, and, for comparison with phenobarbital and 3-methylcholanthrene. The metabolic rates have been correlated with cytochrome P-450 (P-450) isozyme concentrations in the microsomes determined by immunochemical quantitation techniques (G. A. Dannan, F. P. Guengerich, L. S. Kaminsky, and S. D. Aust, (1983) J. Biol. Chem., 258, 1282–1288). The warfarin hydroxylase activities of the P-450 isozyme components of the various microsomal preparations (F. P. Guengerich, G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky (1982) Biochemistry, 21, 6019–6030) were multiplied by the corresponding isozyme concentrations to obtain an assessment of the potential warfarin hydroxylase capacity of the microsomes, and the results were compared with actual activities. The results of these studies and comparisons indicate that substrate regio- and stereoselectivities of microsomal-bound P-450s are essentially retained on purification of the isozymes to homogeneity and reconstitution, that warfarin metabolism by microsomal preparations can be used to predict microsomal P-450 isozyme compositions, and that microsomal warfarin hydroxylase activity is greater than would be predicted based on the approx 20:1 ratio of P-450 to NADPH-P-450 reductase in the microsomes and on the known activities of constituent isozymes. Two P-450 isozymes which are induced by treatment of rats with phenobarbital appear to be more tightly linked to NADPH-P-450 reductase than does an isozyme induced by β-naphthoflavone.  相似文献   

11.
The effect of temperture on steroid C-21 hydroxylation and substrate-cytochrome P-450 binding reaction under turnover conditions (NADPH + O2 are investigated. The Arrhenius activity plot exhibited a single break, while the van 't Hoff plot of the substrate dissociation constant (Ks) exhibited four breaks between 10 and 40°C which corresponded to the characteristic temperatures of the lipids' phase transitions. Unlike the case of the Ks value, the detergent Triton X-114 was without effect on the Arrhenius activity plot. This indicates that the single break in the case of the enzyme activity is distinct from but not necessarily independent of the multiple breaks in the case of the Ks. At physiologic temperature and concentration of the substrate, the free energy (?9.5 kcal/mol) of the substrate-cytochrome binding reaction is more than sufficient to account for the apparent activation energy (6.6 kcal/mol) of the overall hydroxylation. This suggests that the substrate-cytochrome P-450 binding reaction has the potential of being a source of energy for the overall reaction.  相似文献   

12.
Complex formation between the phenobarbital-inducible form of rabbit liver microsomal cytochrome P-450 incorporated into phosphatidylcholine and detergent-solubilized cytochrome b5 is associated with a low-to-high spin transition of the former pigment. It is concluded that the proteins combine in a 1:1 molar ratio. CD spectral analysis in the far uv region reveals that interaction of the cytochromes results in a conformational change of one or both hemoproteins. Such a cytochrome b5-induced structural alteration of the reconstituted enzyme system is accompanied by an increase in affinity of 4-chloroaniline for cytochrome P-450, as measured in terms of cumene hydroperoxide-supported N-oxidation of the arylamine; the maximum velocity of the catalytic process remains unchanged. Similarly, incorporation into the assay media of cytochrome b5 decreases the apparent Kd values of both the amine substrate and the oxygen donor, as determined by optical titration. Stopped-flow spectrophotometric studies on the influence of cytochrome b5 on the kinetics of binding to cytochrome P-450 of 4-chloroaniline and/or cumene hydroperoxide show that the rates of formation and decay of the adducts change as the molar ratio of cytochrome b5 to cytochrome P-450 varies. Moreover, cytochrome b5 modifies the activation energies required for production of the substrate-bound oxy complex. These findings suggest that cytochrome b5, apart from its well-known role as an electron carrier, might exert an effector function in the cytochrome P-450 system.  相似文献   

13.
The destruction of cytochrome P-450 by allylisopropylacetamide (2-isopropyl-4-pentenamide) in microsomes from phenobarbital-pretreated rats has been shown to require oxygen, to be inhibited by NADP through inhibition of cytochrome P-450 reductase, and to be slightly stimulated by NADH. Glutathione (1 mm) does not inhibit destruction, but methyl 4,5-epoxy-2-isopropylpentanoate (5 mm), an analog of the epoxide of allylisopropylacetamide, does. The inactivation of cytochrome P-450 is both time dependent and saturable, although no more than approximately 40% of the microsomal enzyme appears to be normally destructible. However, mechanical perturbation of the microsomal suspension by rehomogenization initiates renewed destruction. Kinetic analysis shows that the destructive process is pseudo-first-order, with an apparent inactivation rate constant of 1.4 × 10?3 s?1 and an apparent Km of 1.14 mm. Approximately 230 molecules of substrate are turned over for each destructive event. These results, in conjunction with previously reported data, clearly and unambiguously establish that inactivation of cytochrome P-450 by allylisopropylacetamide is a suicidal process.  相似文献   

14.
15.
Metyrapone and SKF-525A, together with amphenone B, a structural analogue of metyrapone, which are all inhibitors of cytochrome P-450-mediated reactiors, were shown to inhibit the arachidonic acid-induced aggregation of human platelets. Amphenone B, like metyrapone, exhibited a type II (ligand) binding spectrum with rat liver microsomal cytochrome P-450, in contrast to SKF 525A which is a type I (substrate) binding agent. Independently of their type of binding spectra and of their maximum spectral change, however, the affinity of the three compounds for rat liver cytochrome P-450 showed a close proportional correlation with their platelet aggregation inhibitory potency. All three compounds inhibited the formation of [1?14C]thromboxane B2 from [1?14C]arachidonic acid by human platelets aggregated with collagen. The effect of metyrapone on the remaining labelled products suggested that it is a selective thromboxane synthesis inhibitor, while amphenone B exhibited activity reminiscent of cyclo-oxygenase inhibitors. SKF 525A produced complex effects possibly attributable to cyclo-oxygenase inhibition and enhanced lipid peroxidation, since it also enhanced platelet malonaldehyde formation, which the other two compounds inhibited. These data provide further support for a role of cytochrome P-450 in thromboxane synthesis and platelet aggregation.  相似文献   

16.
The midpoint reduction potentials of the haem iron in bovine adrenal cytochrome P-450 and its associated iron-sulphur protein, adrenal ferredoxin, have been measured, using EPR spectroscopy to monitor the high and low spin ferric haem iron and reduced adrenal ferredoxin signals as a function of potential, in mitochondrial and microsomal suspensions.In mitochondria the high spin (substrate-bound) cytochrome P-450 showed single-component one-electron plots under most conditions; at pH 6.65 cholesterol side-chain cleavage cytochrome P-450 (P-450scc) had a midpoint Em = ?305 mV; at pH 8.0 11β-hydroxylase cytochrome P-450 (P-45011β) had Em = ?335 mV. Low spin cytochrome P-450 showed more complex titration curves under all conditions, which could be most simply interpreted in terms of two one-electron components with midpoint potentials approx. ?360 and ?470 mV, with varying intensities. During treatments that caused substrate binding, only the ?470 mV component was reduced in magnitude. On sonication and removal of adrenal ferredoxin, the ?470 mV low spin component was converted to higher potential. The potentials could also be altered by the cytochrome P-450 inhibitors aminoglutethimide and metyrapone. In the microsomes, a high spin component of cytochrome P-450 (Em ≈ ?290 mV) was observed even at pH 8.0, suggesting the binding of an endogenous substrate, while the low spin P-450 showed a predominance of the ?360 mV component. The midpoint potential of membrane-bound adrenal ferredoxin under these various conditions was found to be ?248 mV ± 15 mV.  相似文献   

17.
Stereoselective metabolism of propranolol side‐chain glucuronidation was studied for two recombinant human uridine diphosphate glucuronosyltransferases (UGTs), UGT1A9 and UGT2B7. The S‐ and R‐propranolol side‐chain glucuronides produced in the incubation mixtures were assayed simultaneously by RP‐HPLC with fluorescent detector. The excitation and emission wavelengths were set at 310 nm and 339 nm, respectively. UGT1A9 prefers catalyzing S‐enantiomer to R‐enantiomer and the intrinsic clearance (CLint) ratios of S‐enantiomer to R‐enantiomer are 3.8 times and 6.5times for racemic propranolol and individual enantiomers, respectively. UGT2B7, however, catalyzes slightly less S‐enantiomer than R‐enantiomer and the CLint ratio of S‐enantiomer to R‐enantiomer is 0.8 times. The high concentration of racemic propranolol (>0.57 mmol/l) and individual enantiomers (>0.69 mmol/l) exhibited substrate inhibition of glucuronidation for UGT2B7, but only the S‐enantiomer (>0.44 mmol/l) in racemic propranolol exhibited substrate inhibition for UGT1A9. The substrate inhibition constants (Ksi) were all similar (P > 0.05). Drug–drug interactions were also found between S‐ and R‐enantiomer glucuronidation metabolisms by UGT1A9 and UGT2B7. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

19.
  • 1.1. The kinetic parameters of the cytosolic epoxide hydrolase were examined with two sets of spectrophotometric substrates. The (2S,3S)- and (2R,3R)-enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-phenylpropyl carbonate had a Kmof 33 and 68 μm and a Vmax of 16 and 27 μmol/min/mg, respectively. With the (2S,3S)- and (2R,3R)- enantiomers of 4-nitrophenyl trans-2,3-epoxy-3-(4-nitrophenyl)propyl carbonate, cytosolic epoxide hydrolase had a KM of 8.0 and 15 μM and a Vmax of 7.8 and 5.0 μmol/min/mg, respectively.
  • 2.2. Glycidyl 4-nitrobenzoate had the lowest I50 of the compounds tested in the glycidyl 4-nitrobenzoate series (I50= 140 μM). The I50 of the (2R)-enantiomer was 3.7-fold higher. The inhibitor with the lowest i50 in the glycidol series, and the lowest I50 of any compound tested, was (2S,3S)-3-(4-nitrophenyl)glycidol (I50 = 13.0μM). It also showed the greatest difference in I50 between the enantiomers (330-fold).
  • 3.3. All enantiomers of glycidyl 4-nitrobenzoates and trans-3-phenylglycidols gave differential inhibition of cytosolic epoxide hydrolase. However, neither the (S,S)-/(S)- or (R,R)-/(R)-enantiomer always had the lower I50.
  • 4.4. Addition of one or more methyl groups to either enantiomer of glycidyl 4-nitrobenzoate resulted in increased I50. However, addition of a methyl group to C2 of either enantiomer of 3-phenylglycidol resulted in a decreased I50. Finally, when the hydroxyl group of trans-3-(4-nitrophenyl)glycidol was esterified the I50 of the (2S,3S)- but not the (2R,3R)-enantiomer increased.
  相似文献   

20.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号