首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

2.
We highly purified O-acetylserine sulfhydrylase from the glutamate-producing bacterium Corynebacterium glutamicum. The molecular mass of the purified enzyme was 34,500 as determined by SDS-polyacrylamide gel electrophoresis, and 70,800 as determined by gel filtration chromatography. It had an apparent Km of 7.0 mM for O-acetylserine and a Vmax of 435 micromol min-1 (mg x protein)-1. This is the first report of the cysteine biosynthetic enzyme of C. glutamicum in purified form.  相似文献   

3.
An extracellular xylanase from the fermented broth of Bacillus cereus BSA1 was purified and characterized. The enzyme was purified to 3.43 fold through ammonium sulphate precipitation, DEAE-cellulose chromatography and followed by gel filtration through Sephadex G-100 column. The molecular mass of the purified xylanse was about 33 kDa. The enzyme was an endoxylanase as it initially degraded xylan to xylooligomers. The purified enzyme showed optimum activity at 55 degrees C and at pH 7.0 and remained reasonably stable in a wide range ofpH (5.0-8.0) and temperature (40-65 degrees C). The Km and Vmax values were found to be 8.2 mg/ml and 181.8 micromol/(min mg), respectively. The enzyme had no apparent requirement ofcofactors, and its activity was strongly inhibited by Cu++, Hg++. It was also a salt tolerant enzyme and stable upto 2.5 M of NaCl and retained its 85% activity at 3.0 M. For stability and substrate binding, the enzyme needed hydrophobic interaction that revealed when most surfactants inhihited xylanase activity. Since the enzyme was active over wide range ofpH, temperature and remained active in higher salt concentration, it could find potential uses in biobleaching process in paper industries.  相似文献   

4.
Purification and characterization of the beta-adrenergic receptor kinase   总被引:12,自引:0,他引:12  
The beta-adrenergic receptor kinase (beta-ARK) is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta-AR) as well as the light-bleached form of rhodopsin. beta-ARK is present in a wide variety of mammalian tissues. The kinase can be purified from bovine cerebral cortex to greater than 90% homogeneity by sequential chromatography on Ultrogel AcA34, DEAE-Sephacel, CM-Fractogel, and hydroxylapatite. This results in an approximately 20,000-fold purification with an overall recovery of 12%. The purified kinase has an Mr approximately 80,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several findings indicate that this peptide contains the beta-ARK activity. First, on hydroxylapatite chromatography the enzyme activity coelutes with the Mr approximately 80,000 protein as revealed by Coomassie-Blue staining. Second, under phosphorylating conditions the Mr approximately 80,000 protein is phosphorylated. Finally, the Mr approximately 80,000 protein specifically interacts with reconstituted agonist-occupied beta-AR. Kinetic parameters of the enzyme for beta-AR are Km = 0.25 microM and Vmax = 78 nmol/min/mg whereas for rhodopsin the values are Km = 6 microM and Vmax = 72 nmol/min/mg. The Km value of the enzyme for ATP is approximately 35 microM using either beta-AR or rhodopsin as substrate. Receptor phosphorylation by beta-ARK is effectively inhibited by Zn2+, digitonin and a variety of salts. The availability of purified beta-ARK should greatly facilitate studies of its role in receptor desensitization.  相似文献   

5.
An adenosine nucleosidase (ANase) (EC 3.2.2.7) was purified from young leaves of Coffea arabica L. cv. Catimor. A sequence of fractionating steps was used starting with ammonium sulphate salting-out, followed by anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme was purified 5804-fold and a specific activity of 8333 nkat mg-1 protein was measured. The native enzyme is a homodimer with an apparent molecular weight of 72 kDa estimated by gel filtration and each monomer has a molecular weight of 34.6 kDa, estimated by SDS-PAGE. The enzyme showed maximum activity at pH 6.0 in citrate-phosphate buffer (50 mM). The calculated Km is 6.3 microM and Vmax 9.8 nKat.  相似文献   

6.
Kallikrein enzyme initially was isolated from rat plasma by passage of citrated plasma through a DEAE-Sephadex column at pH 7.2. The active fraction was purified to electrophoretic apparent homogeneity by precipitation to 60% ammonium sulfate saturation, sequential passage through DE-52 cellulose, Sephadex G-200 and SP-Sephadex columns and finally by chromatofocusing on a PBE-94 column. The kallikrein content of each fraction during purification was monitored on the synthetic substrate N-alpha-tosyl-L-arginine methyl ester (TAME) and by its ability to form kinin from heat-treated rat plasma. The molecular weight was estimated by gel filtration to be 50,000 and by SDS-gel electrophoresis 41,000. Multiple isozymic forms were obtained with pI values ranging from 4.2 to 5.0. The enzyme has a pH optimum of 8.3. The Km and Vmax values for TAME, Bz-pro-phe-arg-pNA and H-D-val-leu-lys-pNA were 1.6, 0.16 and 1.7 mM and 3.09, 0.96 and 0.25 microM/mg/min respectively. The enzyme was inhibited by soybean trypsin inhibitor but not by lima bean trypsin inhibitor.  相似文献   

7.
An enzyme (splitting enzyme 2) which catalyzes the splitting of carbon-mercury linkage of arylmercury compounds was found in extracts of mercury-resistant Pseudomonas K-62. This enzyme was purified about 725-fold by treatment with streptomycin, precipitation with ammonium sulfate, and successive chromatography on Sephadex G-75 and diethylaminoethyl-cellulose. A purified preparation of the enzyme showed a single band in electrophoresis either on polyacrylamide or sodium dodecyl sulfate-containing polyacrylamide gels. The molecular weight of the enzyme was estimated to be 20,000 (determined by Sephadex G-75 gel filtration) 17,000 (determined by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis). The enzyme showed a Km of 180 micron and a Vmax of 3.1 mumol/min per mg for p-chloromercuribenzoic acid and a Km of 250 micron and a Vmax of 20 mumol/min per mg for phenylmercuric acetate. The optimum temperature and pH for the reaction were 40 degrees C and 5.0, respectively.  相似文献   

8.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

9.
5 alpha-Dihydrotestosterone 3 alpha(beta)-hydroxysteroid dehydrogenase [3 alpha(beta)-HSDH] [EC 1.1.1.50/EC 1.1.1.51] which catalyses the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) to both 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol was purified to an apparent homogeneous state using cytosol of three human hyperplastic prostates by a 4-step purification procedure. After each purification step 3 alpha-HSDH activity was coincident with 3 beta-HSDH activity. On average, specific 3 alpha-HSDH activity was enriched 856-fold, specific 3 beta-HSDH activity 749-fold compared to human prostatic cytosol using anion exchange, hydrophobic interaction, gel filtration and affinity chromatography. Examination of the purified enzyme by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) revealed a single protein band with silver staining. The molecular weight of the enzyme was estimated as 33 kDa by SDS-polyacrylamide gel electrophoresis and as 28 kDa by Sephacryl S-200 gel filtration indicating that the native 3 alpha(beta)-HSDH is a monomer. In the presence of the preferred co-factor, NADPH, the purified enzyme had a mean apparent Km for 5 alpha-DHT of 3.9 microM and a Vmax of 93.3 nmol (mg protein)-1 h-1 with regard to 3 alpha-HSDH activity, and a Km of 6.3 microM and a Vmax of 20.6 nmol (mg protein)-1 h-1 with regard to 3 beta-HSDH activity.  相似文献   

10.
The molecular weight of a partially purified alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.1) from the halotolerant yeast Debaryomyces hansenii was estimated to 110,000 by gel filtration. The isoelectric point determined by electrofocusing was at approximately pH 4.4. The enzyme had a broad specificity against phosphomonoesters and also attacked some acid anhydrides. Arsenate, molybdate, and orthophosphate acted as competitive inhibitors. Various metal-binding agents inhibited enzyme activity. A zinc addition almost completely reversed the EDTA inhibition. Magnesium stimulated enzyme activity and was required for maintenance of activity at high concentrations of Na+. Increasing glycerol concentration increased the value of the Michaelis constant (Km) and decreased the maximum velocity (V). Solutions equimolar in KCl and NaCl stimulated enzyme activity by increasing V, whereas the Km was almost unaffected by salt concentration. Enzyme extracted from cells cultured at low salinity was indistinguishable from that of cells grown in the presence of 2.7 M NaCl with respect to several criteria.  相似文献   

11.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

12.
The aminopeptidase which had been shown to be present in Mycoplasma salivarium was found to be associated with the cell membranes of the organism. The enzyme was solubilized in water by papain digestion of the membranes pretreated with Triton X-100 and purified approximately 130-fold by ion-exchange chromatography on DEAE-Sephadex A-50, affinity chromatography on L-leucylglycine-AH-Sepharose 4B, and gel filtration on Sepharose CL-6B. The purified enzyme had a molecular mass of 397 kilodaltons, estimated by gel filtration through Sepharose CL-6B, and gave two bands of activity in analytical disc polyacrylamide gel electrophoresis: a dense, diffuse band and a less dense, narrow one, accounting for 90 and 5% of stained proteins in the gel, respectively. The purified protein revealed two bands with molecular masses of 50 and 46 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzed selectively the cleavage of the N-terminal arginine and leucine residues of peptides; had a pH optimum at 8.5; and was inhibited remarkably by bestatin, o-phenanthroline, EDTA, and L-cysteine, but was activated nine- and twofold by MnCl2 and MgCl2, respectively. The enzyme pretreated with MnCl2 had much higher maximum velocity (Vmax) for L-leucine-p-nitroanilide than the one not treated. That is, the Michaelis constant (Km) and Vmax values of the pretreated enzyme were 10.5 mM and 12.1 microM/min, respectively, whereas those of the untreated enzyme were 5.8 mM and 1.6 microM/min, respectively.  相似文献   

13.
The major inducible trimethylamine oxide reductase was purified from Salmonella typhimurium LT2. The molecular weights of the native enzyme were estimated to be 332,000 by gel filtration and 170,000 by nondenaturing disc gel electrophoresis. In sodium dodecyl sulfate-gel electrophoresis, the enzyme formed a single band of molecular weight 84,000. The isoelectric point was 4.28. Maximum activity was at pH 5.65 and 45 degrees C. Reduced flavin mononucleotide, but not reduced flavin adenine dinucleotide, served as an electron donor. The Km for trimethylamine oxide was 0.89 mM and Vmax was 1,450 U/mg of protein. The enzyme reduced chlorate with a Km of 2.2 mM and a Vmax of 350 U/mg of protein.  相似文献   

14.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

15.
蜗牛酶中一种人参皂苷Rb1水解酶的分离纯化   总被引:8,自引:0,他引:8  
通过DEAE-Sepharose离子交换分段层析,DEAE-Sepharose离子交换梯度层析和SephadexG-100凝胶过滤层析三种方法的联用从中华白玉蜗牛消化酶中分离出一种人参皂苷Rb1水解酶。分离后该酶在SDS-PAGE上呈单一蛋白质务带。应用SDS-PAGE和凝胶过滤层析对分子量的测定,提示该酶是由4个分子量为110~115kD的相同亚基组成的同源四聚体。Rb1为底物的动力学参数Km和Vmax分别为0.790mmol/L和10.192μmol/min/mg。该酶对人参皂苷Rb1糖键进行有选择的水解,可水解人参皂苷Rb1C50位的一个糖苷键生成人参皂苷Rd。  相似文献   

16.
Two forms (mPLC-I, mPLC-II) of phosphoinositide-specific phospholipase C have been purified, 1494- and 1635-fold, respectively, from plasma membranes of human platelets. Purified mPLC-I and mPLC-II had estimated molecular weights by gel filtration and sodium dodecyl sulfate-polyacrylamide gels of 69,000 and 63,000, respectively. Two cytosolic forms (PLC-I and PLC-II) of phosphoinositide-specific phospholipase C were also resolved on a phenyl-Sepharose column. The major cytosolic form present in outdated platelets, PLC-II, was purified to homogeneity by chromatography on Fast Q-Sepharose, cellulose phosphate, heparin-agarose, phenyl-Sepharose, Superose 12, DEAE-5PW, and hydroxylapatite. Purified PLC-II had a molecular weight of 57,000 on sodium dodecyl sulfate-polyacrylamide gels. mPLC-I, mPLC-II, and PLC-II hydrolyzed both PI and PIP2. The Vmax for PIP2 hydrolysis was similar for all three forms of PLC and was approximately 5-fold greater than for PI hydrolysis. The Km for PIP2 hydrolysis was also similar for the three enzymes. In contrast, the Km for PI hydrolysis by PLC-II was 10-fold lower than by mPLC-I and mPLC-II. In addition, antibody prepared against PLC-II did not cross-react with either mPLC-I or mPLC-II. These data indicate that platelets contain membrane-associated phosphoinositide-specific phospholipases C that are distinct from at least one cytosolic form (PLC-II) of the enzyme.  相似文献   

17.
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The PMI and GMP activities co-eluted in the same protein peak through successive fractionation on hydrophobic interaction, ion exchange, and gel filtration chromatography. The purified enzyme migrated as a 56,000 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native protein migrated as a monomer of 54,000 molecular weight upon gel filtration chromatography. The apparent Km for D-mannose 6-phosphate was 3.03 mM, and the Vmax was 830 nmol/min/mg of enzyme. For the GMP forward reaction, apparent Km values of 20.5 microM and 29.5 microM for D-mannose 1-phosphate and GTP, respectively, were obtained from double reciprocal plots. The GMP forward reaction Vmax (5,680 nmol/min/mg of enzyme) was comparable to the reverse reaction Vmax (5,170 nmol/min/mg of enzyme), and the apparent Km for GDP-D-mannose was determined to be 14.2 microM. Both reactions required Mg2+ activation, but the PMI reaction rate was 4-fold higher with Co2+ as the activator. PMI (but not GMP) activity was sensitive to dithiothreitol, indicating the involvement of disulfide bonds to form a protein structure capable of PMI activity. DNA sequencing of a cloned mutant algA gene from P. aeruginosa revealed that a point mutation at nucleotide 961 greatly decreased the levels of both PMI and GMP in a crude extract.  相似文献   

18.
Phenylalanine ammonia-lyase (PAL) from sunflower hypocotyls has been partially purified by selective precipitation with ammonium sulfate and molecular gel filtration on Sephacryl S-300. Kinetic assays carried out with this partially purified PAL preparation revealed that the enzyme did not show a homogeneous kinetic behaviour. The observed kinetic pattern and parameters (Km and Vmax) depended on the assay conditions used and the protein concentration added to the assay mixture. PAL displayed Michaelian or negative cooperativity kinetics. Such behaviour can be explained by the existence of an association-dissociation process of PAL-protein subunits. The presence of mono-, tri- and tetrameric forms of PAL has been assessed by molecular gel filtration on Sephacryl S-200, using different elution conditions.  相似文献   

19.
The membrane-bound enzyme ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) was purified from isolated membrane fragments of Spirillum itersonii approximately 490-fold. Purification was achieved by solubilization with chaotropic salts followed by ammonium sulfate fractionation, diethylaminoethyl-cellulose chromatography, and gel filtration on Sephadex G-200. The purified enzyme has an apparent minimum molecular weight of approximately 50,000, as determined by gel filtration in the presence of 0.1% Brij 35 and 1 mM dithiothreitol but forms high-molecular-weight aggregates in the absence of detergent. Purified ferrochelatase is strongly stimulated in the presence of copper. The apparent Km for Fe2+ is 20 micrometer in the absence of copper and 9.5 micrometer in the presence of 20 micrometer CuCl2. The apparent Km for protoporphyrin is 50 micrometer, and it is unaltered by copper. Ferrochelatase has a single pH optimum of 7.50, and it is inhibited 50% by 20 micrometer heme. Certain divalent cations and sulfhydryl reagents also inhibit the enzyme.  相似文献   

20.
A "low Km" cAMP phosphodiesterase with properties of a peripheral membrane protein accounts for approximately 90% of total cAMP phosphodiesterase activity in particulate (100,000 X g) fractions from rat fat cells. Incubation of fat cells with insulin for 10 min increased particulate (but not soluble) cAMP phosphodiesterase activity, with a maximum increase (approximately 100%) at 1 nM insulin. Most of the increase in activity was retained after solubilization (with non-ionic detergent and NaBr) and partial purification (approximately 20-fold) on DEAE-Sephacel. The solubilized enzyme from adipose tissue was purified approximately 65,000-fold to apparent homogeneity (yield approximately 20%) by chromatography on DEAE-Sephacel and Sephadex G-200 and affinity chromatography on aminoethyl agarose conjugated with the N-(2-isothiocyanato)ethyl derivative of the phosphodiesterase inhibitor cilostamide (OPC 3689). A 63,800 +/- 200-Da polypeptide (accounting for greater than 90% of the protein eluted from the affinity column) was identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (with or without reduction). Enzyme activity was associated with the single protein band after electrophoresis under nondenaturing conditions. On gel permeation, Mr(app) was 100,000-110,000, suggesting that the holoenzyme is a dimer. A pI of 4.9-5.0 was estimated by isoelectric focusing. At 30 degrees C, the purified enzyme hydrolyzed both cAMP and cGMP with normal Michaelis-Menten kinetics; the pH optimum was 7.5. The Km(app) for cAMP was 0.38 microM and Vmax, 8.5 mumol/min/mg; for cGMP, Km(app) was 0.28 microM and Vmax, 2.0 mumol/min/mg. cGMP competitively inhibited cAMP hydrolysis with a Ki of approximately 0.15 microM. The enzyme was also inhibited by several OPC derivatives and "cardiotonic" drugs, but not by RO 20-1724. It was very sensitive to inhibition by agents which covalently modify protein sulfhydryls, but not by diisopropyl fluorophosphate. The activation by insulin and other findings indicate that the purified enzyme, which seems to belong to a subtype of low Km cAMP phosphodiesterases that is specifically and potently inhibited by cGMP, cilostamide, other OPC derivatives, and certain cardiotonic drugs, is likely to account for the hormone-sensitive particulate low Km cAMP phosphodiesterase activity of rat adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号