首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choh SY  Cross D  Wang C 《Biomacromolecules》2011,12(4):1126-1136
Injectable hyaluronic acid (HA) hydrogels cross-linked via disulfide bond are synthesized using a thiol-disulfide exchange reaction. The production of small-molecule reaction product, pyridine-2-thione, allows the hydrogel formation process to be monitored quantitatively in real-time by UV spectroscopy. Rheological tests show that the hydrogels formed within minutes at 37 °C. Mechanical properties and equilibrium swelling degree of the hydrogels can be controlled by varying the ratio of HA pyridyl disulfide and macro-cross-linker PEG-dithiol. Degradation of the hydrogels was achieved both enzymatically and chemically by disulfide reduction with distinctly different kinetics and profiles. In the presence of hyaluronidase, hydrogel mass loss over time was linear and the degradation was faster at higher enzyme concentrations, suggesting surface-limited degradation. The kinetics of hydrogel erosion by glutathione was not linear, nor did the erosion rate correlate linearly with glutathione concentration, suggesting a bulk erosion mechanism. A cysteine-containing chemokine, stromal cell-derived factor 1α, was successfully encapsulated in the hydrogel and released in vitro without chemical alteration. Several different cell types, including fibroblasts, endothelial cells, and mesenchymal stem cells, were successfully encapsulated in the hydrogels with high cell viability during and after the encapsulation process. Substantial cell viability in the hydrogels was maintained up to 7 days in culture despite the lack of adhesion between the HA matrix and the cells. The facile synthesis of disulfide-cross-linked, dual-responsive degradable HA hydrogels may enable further development of bioactive matrices potentially suitable for tissue engineering and drug delivery applications.  相似文献   

2.
Heparin decreases the degradation rate of lipoprotein lipase in adipocytes   总被引:3,自引:0,他引:3  
The mechanism responsible for the stimulation of secretion of lipoprotein lipase by heparin in cultured cells was studied with avian adipocytes in culture. Immunoprecipitation followed by electrophoresis and fluorography were used to isolate and quantitate the radiolabeled enzyme, whereas total lipoprotein lipase was quantitated by radioimmunoassay. Rates of synthesis of lipoprotein lipase were not different for control or heparin treatments as judged by incorporation of L-[35S]methionine counts into lipoprotein lipase during a 20-min pulse. This observation was corroborated in pulse-chase experiments where the calculation of total lipoprotein lipase synthesis, based on the rate of change in enzyme-specific activity during the chase, showed no difference between control (8.13 +/- 3.1) and heparin treatments (9.1 +/- 5.3 ng/h/60-mm dish). Secretion rates of enzyme were calculated from measurements of the radioactivity of the secreted enzyme and the cellular enzyme-specific activity. Degradation rates were calculated by difference between synthesis and secretion rates of enzyme. In control cells 76% of the synthesized enzyme was degraded. Addition of heparin to the culture medium reduced the degradation rate to 21% of the synthetic rate. The presence of heparin in cell media resulted in a decrease in apparent intracellular retention half-time for secreted enzyme from 160 +/- 44 min to 25 +/- 1 min. The above data demonstrate that the increase in lipoprotein lipase protein secretion, observed upon addition of heparin to cultured adipocytes, is due to a decreased degradation rate with no change in synthetic rate. Finally, newly synthesized lipoprotein lipase in cultured adipocytes is secreted constitutively and there is no evidence that it is stored in an intracellular pool.  相似文献   

3.
Biodegradable hydrogels are attractive 3D environments for cell and tissue growth. In cartilage tissue engineering, mechanical stimulation has been shown to be an important regulator in promoting cartilage development. However, the impact of mechanical loading on the gel degradation kinetics has not been studied. In this study, we examined hydrolytically labile gels synthesized from poly(lactic acid)-b-poly(ethylene glycol)-b-poly-(lactic acid) dimethacrylate macromers, which have been used for cartilage tissue engineering. The gels were subject to physiological loading conditions in order to examine the effects of loading on hydrogel degradation. Initially, hydrogels were formed with two different cross-linking densities and subject to a dynamic compressive strain of 15% at 0.3, 1, or 3 Hz. Degradation behavior was assessed by mass loss, equilibrium swelling and compressive modulus as a function of degradation time. From equilibrium swelling, the pseudo-first-order reaction rate constants were determined as an indication of degradation kinetics. The application of dynamic loading significantly enhanced the degradation time for the low cross-linked gels (P < 0.01) while frequency showed no statistical differences in degradation rates or bulk erosion profiles. In the higher cross-linked gels, a 3 Hz dynamic strain significantly increased the degradation kinetics resulting in an overall faster degradation time by 6 days compared to gels subject to the 0.3 and 1 Hz loads (P < 0.0001). The bioreactor set-up also influenced overall degradation behavior where the use of impermeable versus permeable platens resulted in significantly lower degradation rate constants for both cross-linked gels (P < 0.001). The compressive modulus exponentially decreased with degradation time under dynamic loading. Together, our findings indicate that both loading regime and the bioreactor setup influence degradation and should be considered when designing and tuning a biodegradable hydrogel where mechanical stimulation is employed.  相似文献   

4.
We have investigated the effects of nutritional state on the lipoprotein lipase activities of the experimentally hypothyroid rat. Both short-term effects (i.e., those of a 24 h fast with and without re-feeding) and long-term effects (due to decreased food intake in hypothyroidism) have been studied. The hypothyroid rats had significantly higher lipoprotein lipase activities of adipose tissue and heart muscle. The effect of hypothyroidism on adipose tissue lipoprotein lipase activities was modified by the nutritional state. In rats studied after 24 h fasting, the hypothyroid group had significantly higher lipoprotein lipase activities than weight-matched, age-matched and pair-fed (i.e., semi-starved) control groups. In rats studied in the re-fed state, the effects of hypothyroidism as such were less evident, since the pair-fed group also demonstrated significantly higher enzyme activities than did the other control groups. We have also studied the lipoprotein lipase activities of different enzyme preparations from adipose tissue. The effects of hypothyroidism were most clearly reflected in an increase of heparin-elutable enzyme activity from adipose tissue, whereas adipocyte lipoprotein lipase activity and the lipoprotein lipase secretion rate from adipocytes were affected to a lesser extent. We conclude that alterations in food intake strongly influence the lipoprotein lipase activities in the hypothyroidism. Our data also imply that the increased lipoprotein lipase activity in the hypothyroid state is due to a decreased degradation of the enzyme, both intra- and extracellularly.  相似文献   

5.
Most missense mutations of the lipoprotein lipase (LPL) gene identified among LPL-deficient subjects cluster in a segment of the sequence that encodes the catalytic triad as well as functional elements involved in the activation of the lipase at lipid-water interfaces. Consequently, loss of activity may result either from direct alterations of such functional elements or from less specific effects on protein folding and stability. This issue was addressed by examining biochemical properties of four such variants (A176T, G188E, G195E, and S244T) in a heterologous expression system (COS-1 cells). Variant G195E (GGA----GAA) was previously unreported. In all instances, inactive enzyme was recovered in medium, albeit at reduced levels. Cellular synthesis and extracellular degradation were similar to those for wild type, suggesting that reduced secretion resulted from increased intracellular degradation. When cell extracts were subjected to heparin-Superose affinity chromatography followed by elution on a linear salt gradient, all variants exhibited a single, inactive, low affinity immunoreactive peak. By contrast, wild-type enzyme presented an additional, high affinity, active species, which we interpret as homodimeric enzyme. Substitution of the active-site serine (S132A) led to loss of activity but maintenance of the high affinity species. When large amounts of the G188E variant were applied to the column, small but significant amounts of high affinity, active enzyme were recovered. Systematic substitutions at residue 188 showed that only glycine could accommodate structural constraints at this position. We conclude that the mutations examined did not impart lipase deficiency by affecting specific functional elements of the enzyme. Rather, they appear to affect protein folding and stability, and thereby formation and maintenance of subunit assembly.  相似文献   

6.
3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

7.
Equilibrium-binding data of highly purified 125I-labeled avian lipoprotein lipase to cultured avian adipocytes demonstrate the presence of a class of high affinity binding sites. Analysis of the binding function yielded an association constant of 0.62 x 10(8)M-1 and a maximum binding capacity of 2.1 micrograms/60-mm dish. From a time course of dissociation of 125I-lipoprotein lipase from adipocytes at 4 degrees C, a dissociation rate constant of 6.1 x 10(-5)s-1 was obtained. Pretreatment of cells with heparinase and heparitinase resulted in a quantitative suppression of the high affinity binding component, establishing that lipoprotein lipase is bound to cell surface heparan sulfate proteoglycans. At 37 degrees C, cell surface-bound 125I-lipoprotein lipase is internalized and either degraded or recycled to the medium. The degradation rate constant for 125I-lipoprotein lipase was estimated to be 0.78 h-1. The degradation rate constant was reduced 6-fold when cells were exposed to 100 microM chloroquine, indicating that most of the degradation occurs within the lysosomal compartment. By using cells that had been pulsed with Trans35S-label for 1 h, it was demonstrated that acute treatment with endoglycosidases for up to 1 h resulted in a new lipoprotein lipase secretion rate which was 6-fold higher than that of control cells. Degradation of newly synthesized lipoprotein lipase was essentially blocked 30 min after the initiation of the chase. In other studies it was observed that there were no additive effects of chloroquine and either endoglycosidase or heparin treatment on total lipoprotein lipase levels (intracellular, cell surface, and medium) in adipocyte cultures. These experiments support the hypothesis that the release of lipoprotein lipase from its receptor prevents its internalization and degradation and enhances enzyme efflux from the adipocyte. A new model of lipoprotein lipase secretion in cultured adipocytes is proposed: Newly synthesized lipoprotein lipase is transported to the cell surface where it binds to specific heparan sulfate proteoglycan receptors. The enzyme is either released to the medium or internalized via the receptor, in which case the enzyme is degraded or recycled to the cell surface. Major determinants of enzyme efflux from the cell surface include the number and integrity of receptors, the association constant of the enzyme-receptor complex, and the presence in the medium of competing molecules with high affinity for lipoprotein lipase. In this model, modulation of lipoprotein lipase degradation rate may be a significant mechanism for acute regulation of enzyme efflux independent of changes in the rate of enzyme synthesis.  相似文献   

8.
The mechanisms by which adrenaline brings about a reduction in the lipoprotein lipase activity of adipose tissue in vitro were investigated. The incorporation of [3H]leucine into lipoprotein lipase was measured during 1-h pulse incubations of rat epididymal fat bodies that had been preincubated for 4 h in the presence of glucose, insulin and dexamethasone. When adrenaline was added to the incubation medium at the start of the pulse, the incorporation of [3H]leucine was markedly reduced, suggesting that the rate of the enzyme's synthesis had decreased. On the other hand, the degradation of lipoprotein lipase, as measured by the loss of 3H-labelled enzyme protein during pulse-chase incubations of the epididymal fat bodies, was found to be significantly increased by the addition of adrenaline to the incubation medium at the start of the chase period. It is concluded that adrenaline is able both to inhibit the synthesis of lipoprotein lipase and to stimulate its degradation.  相似文献   

9.
We studied the hydrolysis kinetics of amorphous polylactide. It was found the hydrolysis rate had a slow-to-fast transition at a certain molecular weight (Mn). This transition was not correlated with the mass loss and water uptake of samples, nor the pH values of testing media. We speculated that this transition was due to the slow diffusion of polymer chain ends. The chain ends did not significantly promote the hydrolysis of samples until their concentrations (approximately 1/Mn) reached a critical value. The degradation tests were also conducted over a temperature range from 37 to 90 degrees C. A time-temperature equivalent relationship of degradation processes was established and a master curve spanning a time range equivalent to 3-5 years at 37 degrees C was constructed. This master curve can be used to predict polymer degradation processes based on accelerated tests. The functional time and disappearance time of degradable polymers were also discussed.  相似文献   

10.
11.
Hepatic triglyceride lipase (HTGL) was measured in primary rat hepatocytes maintained for 3 days under three different culture conditions: basal medium, basal medium plus insulin, and basal medium plus insulin and phenobarbital. The activity of HTGL secreted by these cells was measured by treating intact cells with heparin; intracellular enzyme was subsequently measured in cell homogenates. Insulin stimulated intracellular triglyceride lipase activity by 48% and extracellular lipase by 30%. Phenobarbital, an enzyme-inducing drug, caused a further 15% increase in extracellular hepatic triglyceride lipase; whereas, the intracellular activity was reduced. The presence of insulin greatly stimulated the rate of enzyme secretion, and this rate was not notably affected by the presence of phenobarbital. After 3 days in culture, the short term (2-8 h) synthesis and secretion of enzyme from cultures treated with insulin or insulin plus phenobarbital were equally inhibited by cycloheximide. Monensin also inhibited enzyme secretion in both cultures and caused a similar increase in intracellular lipase activities. Insulin did not significantly affect the proportion of intracellular enzyme (17.7% basal vs. 15.8% insulin). On the other hand phenobarbital produced a 20-30% reduction in the proportion of intracellular enzyme (12.5 vs. 17.7% basal or 15.8% insulin). These findings suggest a drug-induced redistribution of triglyceride lipase.  相似文献   

12.
A novel technique is described for the immobilization of Candida cylindracea lipase in the soapy-shell of colloidal liquid aphrons (CLAs). CLAs consist of a micron-sized solvent droplet surrounded by a thin, aqueous, soapy-film and are stabilized by a mixture of nonionic and ionic surfactants. Retention of lipase within the CLAs is primarily determined by electrostatic interactions between the surface charges on the protein and those of the anionic surfactant used (SDS) because leakage of the lipase from dispersed CLAs was reduced at low continuous phase pH (相似文献   

13.
Pancreatic lipase has been immobilized onto stainless steel beads by adsorption followed by crosslinking, and onto polyacrylamide by covalent bonding. The activities of the two types of immobilized enzyme toward the particulate substrate, tributyrin emulsion droplets, were determined experimentally, and rate constants based on Michaelis-Menten kinetics were calculated. The activity of the stainless steel-lipase was determined for various flow conditions and for various support sizes by the use of a differential fluidized bed recycle reactor. The rate constants calculated indicate that the experimental reaction rate is free from mass transfer influences, since the observed Michaelis constant does not vary with the fluidization velocity or with the support particle size. In addition, the Michaelis constant of the stainless steel-lipase was found to be equal to that of the free enzyme, suggesting that adsorption and subsequent crosslinking does not alter the enzyme-substrate affinity. The emulsion substrate mass transfer rates, calculated from the filtration theory, indicate that each substrate particle which contact the immobilized enzyme is hydrolyzed to a significant extent. The experimentally determined kinetic rate constants may be used directly to predict the size of integral fluidized bed reactors.  相似文献   

14.
Summary The effects of residual enzyme activity, stepwise addition of lipase at different reaction times, and enzyme quantity in direct polyesterification of sebacic acid and 1,4-butanediol catalyzed by a lipase from Rhizomucor miehei were investigated. Although the lipase activity dropped sharply in the beginning period of the reaction, the molar mass of the polyester increased rapidly, up to 39,000 g mol–1 in 72 h. The residual lipase activity (hydrolytic) was only 14 %. Stepwise addition of lipase did not improve polyester synthesis. Highest mass average molar mass of 56,000 g mol–1 was obtained with 0.125 g of lipase (28.5%, w/w) in 5 days.  相似文献   

15.
The purified lipase from Burkholderia cepacia was immobilised on a porous polypropylene support and its biocatalytic properties were compared with those of the free enzyme in organic media. For both lipase preparations, the rate of p-nitrophenyl ester hydrolysis in n-heptane was not restricted by mass transfer limitations. The immobilisation changed neither the temperature at which the reaction rate was maximal, nor the activation energy of the reaction. The enzyme stability was slightly decreased (1.3-fold) upon immobilisation. Moreover, the immobilised enzyme displayed fewer variations of activity with fatty acid chain length. Interestingly, for all the different p-nitrophenyl esters used, the immobilised enzyme was more active (from 5.8- to 18.9-fold) than the free enzyme. Therefore, it would be very useful to use B. cepacia lipase immobilised onto porous polypropylene for applications in organic media, as it displayed high activities on a larger range of substrates. Received: 8 February 1999 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

16.
Sedimentation equilibrium analysis demonstrated that preparations of bovine lipoprotein lipase contain a complex mixture of dimers and higher oligomers of enzyme protein. Enzyme activity profiles from sedimentation equilibrium as well as from gel filtration indicated that activity is associated almost exclusively with the dimer fraction. To explore if the enzyme could be dissociated into active monomers, 0.75 M guanidinium chloride was used. Sedimentation velocity measurements demonstrated that this treatment led to dissociation of the lipase protein into monomers. Concomitant with dissociation, there was an irreversible loss of catalytic activity and a moderate change in secondary structure as detected by circular dichroism. The rate of inactivation increased with decreasing concentrations of active lipase, but addition of inactive lipase protein did not slow down the inactivation. This indicates that reversible interactions between active species precede the irreversible loss of activity. The implication is that dissociation initially leads to a monomer form which is in reversible equilibrium with the active dimer, but which decays rapidly into an inactive form, and is therefore not detected as a stable component in the system.  相似文献   

17.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

18.
Incubation of low density lipoprotein(s) (LDL) with either lipoprotein lipase or hepatic lipase led to modification of the core lipid composition of LDL. Both lipases modified LDL by substantially reducing core triglyceride content without producing marked differences in size, charge, or lipid peroxide content in comparison to native LDL. The triglyceride-depleted forms of LDL that result from treatment with these two enzymes were degraded at approximately twice the rate of native LDL by human monocyte-derived macrophages (HMDM). Lipase-modified LDL degradation was inhibited by chloroquine, suggesting lysosomal involvement in LDL cellular processing. The increased degradation by macrophages of the LDL modified by these lipases was accompanied by enhanced cholesterol esterification rates, as well as by an increase in cellular free and esterified cholesterol content. In a patient with hepatic triglyceride lipase deficiency, degradation of the triglyceride-rich LDL by HMDM was approximately half that of normal LDL. Following in vitro incubation of LDL from this patient with either lipoprotein or hepatic lipase, lipoprotein degradation increased to normal. Several lines of evidence indicate that LDL modified by both lipases were taken up by the LDL receptor and not by the scavenger receptor. 1) The degradation of lipase-modified LDL in nonphagocytic cells (human skin fibroblast and arterial smooth muscle cells) as well as in phagocytic cells (HMDM, J-774, HL-60, and U-937 cell lines) could be dissociated from that of acetylated LDL and was always higher than that of native LDL. A similar pattern was found for cellular cholesterol esterification and cholesterol mass. 2) LDL receptor-negative fibroblasts did not degrade lipase-modified LDL. 3) A monoclonal antibody to the LDL receptor inhibited macrophage degradation of the lipase-modified LDL. 4) Excess amounts of unlabeled LDL competed substantially with 125I-labeled lipase-modified LDL for degradation by both macrophages and fibroblasts. Thus, lipase-modified LDL can cause significant cholesterol accumulation in macrophages even though it is taken up by LDL and not by the scavenger receptor. This effect could possibly be related to the reduced triglyceride content in the core of LDL, which may alter presentation of the LDL receptor-binding domain of apolipoprotein B on the particle surface, thereby leading to increased recognition and cellular uptake via the LDL receptor pathway.  相似文献   

19.
L Persson  J E Seely  A E Pegg 《Biochemistry》1984,23(16):3777-3783
An immunoblotting technique was used to study the forms of ornithine decarboxylase present in androgen-induced mouse kidney. Two forms were detected which differed slightly in isoelectric point but not in subunit molecular weight (approximately 55 000). Both forms were enzymatically active and could be labeled by reaction with radioactive alpha-(difluoromethyl)-ornithine, an enzyme-activated irreversible inhibitor. On storage of crude kidney homogenates or partially purified preparations of ornithine decarboxylase, the enzyme protein was degraded to a smaller size (Mr approximately 53 000) without substantial loss of enzyme activity. The synthesis and degradation of ornithine decarboxylase protein were studied by labeling the protein by intraperitoneal injection of [35S]methionine and immunoprecipitation using both monoclonal and polyclonal antibodies. The fraction of total protein synthesis represented by renal ornithine decarboxylase was increased at least 25-fold by testosterone treatment of female mice and was found to be about 1.1% in the fully induced androgen-treated female. Both forms of the enzyme were rapidly labeled in vivo, and the immunoprecipitable ornithine decarboxylase protein was almost completely lost after 4-h exposure to cycloheximide, confirming directly the very rapid turnover of this enzyme. Treatment with 1,3-diaminopropane which is known to cause a great reduction in ornithine decarboxylase activity did not greatly selectively inhibit the synthesis of the enzyme. However, 1,3-diaminopropane did produce an increase in the rate of degradation of ornithine decarboxylase and a general reduction in protein synthesis. These two factors, therefore, appear to be responsible for the loss of ornithine decarboxylase activity and protein in response to 1,3-diaminopropane.  相似文献   

20.
Phospholipase A(2) (PLA(2)) was purified to homogeneity from the supernatant fraction of rat testis homogenate. The purified 63-kDa enzyme did not require Ca(2+) ions for activity and exhibited both phosphatidic acid-preferring PLA(2) and monoacylglycerol lipase activities with a modest specificity toward unsaturated acyl chains. Anionic detergents enhanced these activities. Serine-modifying irreversible inhibitors, (p-amidinophenyl) methanesulfonyl fluoride and methylarachidonyl fluorophosphonate, inhibited both activities to a similar extent, indicating a single active site is involved in PLA(2) and lipase activities. The sequence of NH(2)-terminal 12 amino acids of purified enzyme was identical to that of a carboxylesterase from rat liver. The optimal pH for PLA(2) activity (around 5.5) differed from that for lipase activity (around 8.0). At pH 5.5 the enzyme also hydrolyzed bis(monoacylglycerol) phosphate, or lysobisphosphatidic acid (LBPA), that has been hitherto known as a secretory PLA(2)-resistant phospholipid and a late endosome marker. LBPA-enriched fractions were prepared from liver lysosome fractions of chloroquine-treated rats, treated with excess of pancreatic PLA(2), and then used for assaying LBPA-hydrolyzing activity. LBPA and the reaction products were identified by microbore normal phase high performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. These enzymatic properties suggest that the enzyme can metabolize phosphatidic and lysobisphosphatidic acids in cellular acidic compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号