首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮磷施肥对拟南芥叶片碳氮磷化学计量特征的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
研究植物碳(C)氮(N)磷(P)化学计量特征, 有助于了解C、N、P元素的分配规律和确定限制植物生长的元素类型, 理解生长速率调控的内在机制。该研究基于盆栽施肥试验, 测定不同N、P供应水平下拟南芥(Arabidopsis thaliana)叶片的生物量和C、N、P含量, 分析拟南芥的限制元素类型、验证生长速率假说、探讨N、P的内稳性差异和C、N、P元素间的异速生长关系。主要结果如下: 盆栽试验基质中限制元素是P, 施N过多可能引起毒害作用; 拟南芥的生长符合生长速率假说, 即随着叶片N:P和C:P的增加, 比生长速率显著减小; 叶片P含量存在显著的调整系数(3.5), 但叶片N含量与基质N含量之间无显著相关; 叶片N和P含量具有显著的异速生长关系, 但不符合N-P3/4关系, 施P肥导致表征N、P异速生长关系的幂指数(0.209)显著低于施N肥处理(0.466)。该研究首次基于温室培养实验分析了拟南芥C、N、P的化学计量特征及其对N、P添加的响应, 研究结果将为野外研究不同物种、群落或生态系统的化学计量特征提供参考。  相似文献   

2.
内蒙古自治区土壤有机碳、氮蓄积量的空间特征   总被引:23,自引:8,他引:23  
采用全国策二次土壤普查中内蒙古自治区的典型土种剖面资料,在剖面深度的基础上,用地统计学和地理信息系统(GIS)方法,分别按土壤类型和土地覆被类型计算了土壤有机碳、氮密度,分析了内蒙古自治区土壤有机碳、氮蓄积量的空间分布特征,探讨了土壤有机碳、氮蓄积量与主要气候要素的关系.结果表明,内蒙古自治区土壤有机碳密度处于3.24-43.24kg·m^-3之间,土壤有机氮密度处于269.56-3085.60g·m^-3之间,土壤碳、氮比(C/N)大致在4.46-17.13之间.土壤有机碳、氮密度与温度呈负相关,相关系数分别为0.557和0.460(n=245);与年均降水量呈正相关,但相关性不是很强,相关系数分别为0.285和0.203.从内蒙古自治区东北地区到西南地区,土壤有机碳、氮蓄积量随着温度递升和降水量递减呈现降低的趋势。  相似文献   

3.
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0–10 cm mineral soil) by analysing data from 15 long-term (14–30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30–50 kg N ha−1 year−1) were always more efficient per unit of N than high application rates (50–200 kg N ha−1 year−1). Addition of a cumulative amount of N of 600–1800 kg N ha−1 resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg−1 (N added) (“N-use efficiency”), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg−1 (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg−1 (N) at C/N 35 and decreased again to about 20 kg (C) kg−1 (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40–50 kg (C) kg−1 (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3–4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg−1 (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha−1 year−1 higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 ± 1.0 (95% confidence interval) kg m−2 more tree C and 1.3 ± 0.5 kg m−2 more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70–80% of the difference in SOC can be explained by different N deposition.  相似文献   

4.
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.  相似文献   

5.
The in vivo activity of the alternative pathway (ν(alt)) has been studied using the oxygen isotope fractionation method in leaves of Arabidopsis thaliana modified for the expression of the AtAOX1a gene by anti-sense (AS-12) or overexpression (XX-2). Under non-stressful conditions, ν(alt) was similar in all plant lines regardless of its different alternative pathway capacities (V(alt)). Total leaf respiration (V(t)) and V(alt) were directly related to growth light conditions while electron partitioning between the cytochrome pathway (CP) and alternative pathway (AP) was unchanged by light levels. Interestingly, the AP functioned at full capacity in anti-sense plants under both growth light conditions. The role of the AP in response to a high light stress induced by short-term high light treatment (HLT) was also studied. In wild type and XX-2, both CP and AP rates increased proportionally after HLT while in AS-12, where the AP was unable to increase its rate, the CP accommodated all the increase in respiration. The results obtained under high light stress suggest that flexibility in the response of the mitochondrial electron transport chain is involved in sustaining photosynthetic rates in response to this stress while the saturated AP in AS-12 plants may contribute to the observed increase in photoinhibition.  相似文献   

6.
培养基质碳氮比显著影响食用菌菌丝生长及子实体生长发育.广叶绣球菌是一种珍贵的食药用真菌,前期研究发现其生长发育过程中对碳源的需求较多.本研究采用松木屑、复合氮源作为栽培原料,研究基质碳氮比对绣球菌菌丝生长及子实体生长发育的影响.结果 表明:6种不同碳氮比(C/N)的栽培基质对菌丝生长速度无显著影响,但是随着C/N比值的...  相似文献   

7.
通过原位进行了对照(CK)、低氮(LN,50kgN.hm-2.a-1)、中氮(MN,100kgN.hm-2.a-1)和高氮(HN,150kgN.hm-2.a-1)处理,研究了川西南天然常绿阔叶林凋落物分解及养分释放对模拟N沉降的响应.结果表明:凋落物分解95%需要4.72~6.33年,分解率最高的为CK,最低的为HN.经过365d,各处理的分解率均低于CK,仅HN与CK间差异显著(P<0.05);C残留率均高于CK;N和K残留率均显著高于CK(P<0.05);P残留率均高于CK,仅LN与CK间差异显著(P<0.05).各处理凋落物的C/N升高3.9%~23.7%.凋落物分解过程中N元素的迁移模式为富集-释放,C、P和K元素则表现为直接释放.N沉降对凋落物中养分元素的释放及木质素和纤维素的降解均具有抑制作用.随着处理时间的延长,N沉降对川西南常绿阔叶林凋落物分解的影响从正效应转向负效应,且负效应随沉降浓度的增加而加强.  相似文献   

8.
为探讨苔原植被对气候变暖的响应模式, 采用开顶箱增温法, 研究了3个生长季增温对长白山苔原3种代表植物——牛皮杜鹃(Rhododendron aureum)、笃斯越桔(Vaccinium uliginosum)和东亚仙女木(Dryas octopetala var. asiatica)的叶片及土壤碳(C)、氮(N)、磷(P)含量及其比值的影响。结果表明: 增温使土壤N和P的含量分别增加5.88%和4.83%, C含量降低13.19%; 增温和对照(不增温)条件下, 植物叶片的C、N、P含量及其比值在生长季有明显的变化。增温使笃斯越桔和东亚仙女木叶片的P含量分别增加10.34%和12.87%, 牛皮杜鹃则降低了16.26%, 增温并没有明显改变3种植物叶片的C、N含量, 但牛皮杜鹃和东亚仙女木叶片的C:N值在增温条件下呈现增加趋势。增温使土壤可利用的N、P含量增加。增温对3种植物的C:N值, 牛皮杜鹃、笃斯越桔的P含量, 以及东亚仙女木的C:P值都产生了显著的影响。结果表明增温增加了长白山苔原P元素对植物生长的限制, 且3种植物叶片的C、N、P化学计量学特性对增温的响应模式和尺度没有表现出一致性。  相似文献   

9.
We used instantaneous temperature responses of CO2‐respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light‐saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol?1 when supply of N was weak, to ~70 kJ mol?1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20–40 °C) could be fully described by 2 exponent parameters of an Arrhenius‐type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment‐induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source‐sink imbalances in carbohydrate utilization, which in combination with shifts in carbon‐flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.  相似文献   

10.
We grew loblolly and ponderosa pine seedlings in a factorial experiment with two CO2 partial pressures (35 and 70 Pa), and two nitrogen treatments (1.0 and 3.5 mol m?3 NH4+), for one growing season to examine the effects of carbon and nitrogen availability on leaf construction cost. Growth in elevated CO2 reduced leaf nitrogen concentrations by 17 to 40%, and increased C:N by 22 to 68%. Elevated N availability increased leaf N concentrations and decreased C:N. Non-structural carbohydrates increased in high-CO2-grown loblolly seedlings, except in fascicles from low N, and in ponderosa primary and fascicle leaves grown in high N. In loblolly, increases in starch were nearly 2-fold greater than the increases in soluble sugars. In ponderosa, only the soluble sugars were affected by CO2. Leaf construction cost (g glucose g?1 dm) varied by 9.3% across all treatments. All of the variation in loblolly leaf construction cost could be explained by changes in non-structural carbohydrates. A model of the response of construction cost to changes in the mass of different biochemical fractions suggests that the remainder of the variation in ponderosa, not explained by non-structural carbohydrates, is probably attributable to changes in lignin, phenolic or protein concentrations.  相似文献   

11.
太湖沉积物有机碳与氮的来源   总被引:19,自引:0,他引:19  
选取太湖梅梁湾和湖心柱状沉积物,研究了其有机碳同位素(δ13C)和氮同位素(δ15N)、C/N、总有机碳(TOC)、总氮(TN)、总磷(TP)含量,并结合210Pb和137Cs沉积物年代测定技术,探究了近百年太湖沉积物有机质和氮的来源。结果表明:太湖梅梁湾湖区在近百年来,其有机质来源总体以自生为主。50年代以前,湖区受到人类活动的影响较小,沉积物有机质主要来自于湖泊自身水生植物的沉积;50年代到70年代,湖泊内部环境发生变化,湖区逐渐出现藻类大量死亡并沉积的现象,有机质主要来自于水生植物和藻类的共同沉积;70年代到80年代沉积物机质藻类贡献进一步增大;90年代后到现在,则以藻类的沉积为主要来源方式。梅梁湾湖区沉积物氮素的来源在50年代以前主要以流域土壤流失和大型水生植物的死亡为主;50年代到70年代,人类活动的加剧导致大量工业废水、生活污水的输入,藻类开始大面积爆发,氮主要来自于外源的输入、大型植物和藻类的死亡沉积;90年代后到现在,外源氮的输入得到有效地控制,藻类对沉积物氮的贡献相对显著。湖心区域沉积物有机质和氮的来源主要来自于湖泊内部水生植物的沉积。70年代前,沉积物有机质和氮的来源主要来自于水生植物的沉积和水土流失作用;70年代至今,虽然湖泊受到人类活动外源物质输入影响逐渐增大,但总体来讲贡献较小,沉积物有机质和氮的来源仍以湖泊自生为主。  相似文献   

12.
13.
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
We studied the effect of low above-zero temperature (2°C) on the content of low-molecular antioxidants (ascorbic acid, glutathione, and carotenoids) and also activities of antioxidant enzymes (ascorbate peroxidase, APO; catalase, CAT; glutathione reductase, GR; and superoxide dismutase, SOD) in green barley (Hordeum vulgare L.) seedlings. Under stress conditions, the content of low-molecular antioxidants, especially that of reduced ascorbate form, increased. Low-temperature stress activated APO, CAT, GR, and SOD. First enzymes responding to the action of stress factor were APO and CAT, i.e., enzymes neutralizing hydrogen peroxide in plant cells, which indicated H2O2 active generation at low temperature. Cytoplasmic SOD was more active than its chloroplast isoforms. This indicates that oxidative process initiation under low-temperature stress occurred more active in the cytosol. After termination of stress-factor action, the content of total ascorbate, glutathione, and carotenoids reduced rapidly to the level close to the initial one. During post-stress period, the amount of reduced ascorbate declined as well; however, it remained at the level higher than the initial one. Activities of APO and CAT dropped sharply; activities of GR and SOD reduced gradually. Thus, reduced ascorbate, APO, and CAT play an important role in plant cell defense against above-zero temperatures close to zero; reduced ascorbate, GR, and SOD are especially important during post-stress period.  相似文献   

15.
Choi C  Lee J  Lee K  Kim M 《Bioresource technology》2008,99(13):5397-5401
An intermittently aerated membrane bioreactor (IAMBR) system has been developed to improve the efficiency of nutrient removal, and for the stable treatment of organic matter which is contained as suspended solid (SS) in the influent. The important operating factors of an intermittently aerated bioreactor (IABR) are sludge retention times (SRTs) and carbon/nitrogen (C/N) ratios. Because research on IAMBR is young, this paper explores the effect of SRTs and C/N ratios on these systems. For SRTs of 20, 25, 30, and 40 days, there was little difference in the removal of COD, T–N, and T–P. In comparing C/N ratios of 4.5, 7, and 10, the COD concentration in permeate with a C/N ratio of 10 was most stable, although the concentration of organic matter in the influent was high. The removal efficiencies of T–N and T–P in permeate with a C/N ratio of 10 were the highest at 92.9% and 88.9%, respectively. This implies that a C/N ratio above 10 should be maintained for a nutrient removal efficiency of approximately 90%.  相似文献   

16.
The influence of the consumed carbon to nitrogen (C/N) ratio on mycelial morphology was investigated in cultures ofMortierella alpina using shake flasks. The consumed C/N ratio was varied from 5 to 32 under the condition that the total initial amount of the carbon and nitrogen sources was 50 g/L. The whole mycelia and filamentous mycelia exhibited no relationship with the consumed C/N ratio below a consumed C/N ratio of 20 in the presence of either excess carbon or excess nitrogen. However, when the consumed C/N ratio increased higher than 20, the mycelial sizes increased in proportion to the consumed C/N ratio. However, the area ratio of filamentous mycelia to total mycelia was found to be independent of the consumed C/N ratio, and remained constant at 0.82. In the case of a fixed consumed C/N ratio of 20, the whole mycelia and filamentous mycelia increased in proportion to the degree of the medium strength, yet the area ratio of filamentous mycelia to total mycelia remained unchanged at 0.76. Accordingly, these results show that fungal morphology and mycelial size are both affected by the ratio of carbon to nitrogen. The findings of the current study will be helpful in obtaining the efficient production of useful bioproducts from fungal cultures.  相似文献   

17.
Transformed plants of Nicotiana plumbaginifolia Viv. constitutively expressing nitrate reductase (35S-NR) or β-glucuronidase (35S-GUS) and untransformed controls were grown for two weeks in a CO2-enriched atmosphere. Whereas CO2 enrichment (1000 μl · l−1) resulted in an increase in the carbon (C) to nitrogen (N) ratio of both the tobacco lines grown in pots with vermiculite, the C/N ratio was only slightly modified when plants were grown in hydroponic culture in high CO2 compared to those grown in air. Constitutive nitrate reductase (NR) expression per se did not change the C/N ratio of the shoots or roots. Biomass accumulation was similar in both types of plant when hydroponic or pot-grown material, grown in air or high CO2, were compared. Shoot dry matter accumulation was primarily related to the presence of stored carbohydrate (starch and sucrose) in the leaves. In the pot-grown tobacco, growth at elevated CO2 levels caused a concomitant decrease in the N content of the leaves involving losses in NO 3 and amino acid levels. In contrast, the N content and composition were similar in all plants grown in hydroponic culture. The 35S-NR plants grown in air had higher foliar maximum extractable NR activities and increased glutamine levels (on a chlorophyll or protein basis) than the untransformed controls. These increases were maintained following CO2 enrichment when the plants were grown in hydroponic culture, suggesting that an increased flux through nitrogen assimilation was possible in the 35S-NR plants. Under CO2 enrichment the NR activation state in the leaves was similar in all plants. When the 35S-NR plants were grown in pots, however, foliar NR activity and glutamine content fell in the 35S-NR transformants to levels similar to those of the untransformed controls. The differences in NR activity between untransformed and 35S-NR leaves were much less pronounced in the hydroponic than in the pot-grown material but the difference in total extractable NR activity was more marked following CO2 enrichment. Foliar NR message levels were decreased by CO2 enrichment in all growth conditions but this was much more pronounced in pot-grown material than in that grown hydroponically. Since β-glucuronidase (GUS) activity and message levels in 35S-GUS plants grown under the same conditions of CO2 enrichment (to test the effects of CO2 enrichment on the activity of the 35S promoter) were found to be constant, we conclude that NR message turnover was specifically accelerated in the 35S-NR plants as well as in the untransformed controls as a result of CO2 enrichment. The molecular and metabolic signals involved in increased NR message and protein turnover are not known but possible effectors include NO3 , glutamine and asparagine. We conclude that plants grown in hydroponic culture have greater access to N than those grown in pots. Regardless of the culture method, CO2 enrichment has a direct effect on NR mRNA stability. Received: 17 October 1996 / Accepted: 11 February 1997  相似文献   

18.
冬小麦生境中土壤养分对凋落物碳氮释放的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
土壤养分影响植物生长, 进而影响凋落物质量和产量; 凋落物质量和产量影响凋落物分解过程。基于一个生长实验和一个相同环境分解实验, 研究了冬小麦(Triticum aestivum)生境中养分可利用性对凋落物碳(C)和氮(N)释放的影响。结果显示: (1)冬小麦凋落物产量、叶/根C:N比、C释放量和N释放量随土壤养分梯度呈单调变化; (2)土壤养分影响叶凋落物丢失率而不影响根凋落物丢失率; (3)初始叶/根C:N比与其C、N释放量之间存在负相关关系; (4)分解过程降低叶C:N比和根C:N比。结果表明: 生境中土壤养分的提高可加速凋落物C、N归还, 这反过来可能促进冬小麦生长, 因此这种效应是正反馈; 初始C:N比可预测凋落物C、N释放量。  相似文献   

19.
Partitioning of nitrogen by soybeans ( Glycine max L. Merr. cv. Hodgson) grown in natural conditions was studied by successive exposures of root systems to 15N2 and periodical measurements of 15N distribution. Nitrogen derived from the atmosphere was mainly found in the aerial parts of the plants, and the stage of development exerted a strong influence on the initial 15N distribution (measured one week after incorporation). Until day 69 after sowing, leaf blades contained 47 to 57% of the fixed N. After that, reproductive structures attracted increasing proportions, 10 to 60% between days 69 and 92. Around day 82, stems and petioles stored up to 30% of the newly fixed N. During pod development and pod filling and until maturity, fixed N was remobilized from vegetative tissues and pod walls to seeds. These transfers first concerned the newly incorporated N, but at maturity 80 to 90% of the total was recovered in the seeds. The high mobility of N originating from the atmosphere as compared to that coming from the soil (vegetative tissues exported only 50% of their total N) seems to indicate that fixed N was at least partially integrated in a special pool. This was certainly the case at the later stage of N2 fixation, when a large portion of fixed N accumulated in the stems and petioles, probably in the form of storage compounds such as ureides for later transfer to the developing seeds. Further research is needed in order to investigate the nature and role of this pool in the nitrogen nutrition of soybeans.  相似文献   

20.
Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in vitro. However, the role of DiT1 in intact plants and its significance for ammonia assimilation remained uncertain. Here, to study the role of DiT1 in intact plants, its expression was antisense-repressed in transgenic tobacco plants. This resulted in a reduced transport capacity for 2-OG across the plastid envelope membrane. In consequence, allocation of carbon precursors to amino acid synthesis was impaired, organic acids accumulated and protein content, photosynthetic capacity and sugar pools in leaves were strongly decreased. The phenotype was consistent with a role of DIT1 in both, primary ammonia assimilation and the re-assimilation of ammonia resulting from the photorespiratory carbon cycle. Unexpectedly, the in situ rate of nitrate reduction was extremely low in alpha-DiT1 leaves, although nitrate reductase (NR) expression and activity remained high. We hypothesize that this discrepancy between extractable NR activity and in situ nitrate reduction is due to substrate limitation of NR. These findings and the severe phenotype of the antisense plants point to a crucial role of DiT1 at the interface between carbon and nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号