首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study we investigated the effect of two different exercise protocols on fibre composition and metabolism of two specific muscles of mice: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.  相似文献   

3.
In human gastrocnemius muscle obtained from long-distance runners, mitochondrial creatine kinase (CK) activities were significantly greater than nonrunning control skeletal muscle and significantly increased during training for and after a marathon race. Thus skeletal muscle tended to become similar to heart muscle in its mitochondrial CK composition. Total muscle CK activity was significantly different in males and females, was unaffected by marathon training and racing, and was similar to gastrocnemius muscle obtained from nonrunning controls. There was an inverse correlation between the maximum O2 uptake and the percentage increase in mitochondrial CK activity after training. These studies suggest that mitochondrial CK may play a key role in the intracellular transport of energy from mitochondrial to myofibrils in skeletal muscle during endurance exercise such as long-distance running.  相似文献   

4.
Experiments were performed to investigate the effects of 60 min severe global ischemia followed by 30 min reperfusion on the antioxidant enzymatic system in the isolated perfused rat heart. Ischemia induced a significant increase of cytoplasmic and mitochondrial selenium-dependent glutathione peroxidase (EC 1.11.1.9) activity. In reperfused hearts, only the mitochondrial form showed a further significant increase. Glutathione reductase (EC 1.6.4.2) was increased in ischemic hearts, whilst the reperfused hearts showed a decrease towards the level found in aerobic hearts. Mitochondrial superoxide dismutase (EC 1.15.1.1) activity was depressed in ischemic as well as in reperfused hearts, though the cytoplasmic form was unmodified. Catalase (EC 1.11.1.6), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutathione transferase (EC 2.5.1.18) activities were unchanged throughout the experiment. Ischemia and reperfusion induced a significant fall in tissue-reduced glutathione content concomitant with an increase of its oxidized form. We have also studied the mitochondrial inner membrane proteins for both molecular weight, with Coomassie blue, and thiol status, with monobromobimane stain, using a sodium dodecyl sulfate polyacrylamide gel electrophoresis technique. Neither ischemia nor reperfusion effected any relevant modification of the molecular weight of the mitochondrial inner-membrane proteins either in the presence or absence of a reducing agent. However, two of these proteins with an apparent molecular weight of 52 0000 and 12 000 showed a decrease in the monobromobimane stain, probably due to the oxidation of their thiol groups.  相似文献   

5.
Injecting of dexamethasone (10 mg/kg body weight) for 8 days to rats decreased the body weight and feed intake by 29 and 50%, respectively. The increase in weights of liver, heart, kidneys and testes per 100 g body weight was 55, 37, 33 and 13%, respectively. Though, in general, the triglyceride content increased in all the organs, maximum increase (9-fold) was observed in the liver. The plasma showed elevated levels of triglycerides, cholesterol and phospholipids. In hepatic mitochondrial membranes, the content of protein, phospholipids and cholesterol decreased/g tissue. The percent 14C distribution, as a part of total incorporation in nonpolar lipids, of [14C]acetate into triglycerides of liver, kidneys and testes increased significantly. The increased turnover of phospholipids in liver and heart was mainly due to increased turnover of phosphatidyl choline (PC) and phosphatidyl ethanolamine in liver and PC in heart. Turnover of phospholipids of testes was not affected.  相似文献   

6.
Impaired mitochondrial function and structure and intramyocellular lipid (IMCL) accumulation have been associated with obesity and Type 2 diabetes. We examined whether endurance exercise training and sex influenced IMCL and mitochondrial morphology using electron microscopy, whole-body substrate use, and mitochondrial enzyme activity. Untrained men (n = 5) and women (n = 7) were tested before and after 7 wk of endurance exercise training. Testing included 90 min of cycle ergometry at 60% Vo(2 peak) with preexercise muscle biopsies analyzed for IMCL and mitochondrial size/area using electron microscopy and short-chain beta-hydroxyacyl-CoA dehydrogenase (SCHAD) and citrate synthase (CS) enzyme activity. Training increased the mean lipid area density (P = 0.090), the number of IMCL droplets (P = 0.055), the number of IMCL droplets in contact with mitochondria (P = 0.010), the total mitochondrial area (P < 0.001), and the size of individual mitochondrial fragments (P = 0.006). Women had higher mean lipid area density (P = 0.030) and number of IMCL droplets (P = 0.002) before and after training, but higher individual IMCL area only before training (P = 0.013), compared with men. Women oxidized more fat (P = 0.027) and less carbohydrate (P = 0.032) throughout the study. Training increased Vo(2 peak) (P < 0.001), %fat oxidation (P = 0.018), SCHAD activity (P = 0.003), and CS activity (P = 0.042). In summary, endurance exercise training increased IMCL area density due to an increase in the number of lipid droplets, whereas the increase in total mitochondrial area was due to an increase in the size of individual mitochondrial fragments. In addition, women have higher IMCL content compared with men due mainly to a greater number of individual droplets. Finally, endurance exercise training increased the proportion of IMCL in physical contact with mitochondria.  相似文献   

7.
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were determined in rat heart with or without endurance training after an acute bout of exercise of different duration. In the untrained rats, state 4 respiration and UCR-independent respiration rates were progressively increased with exercise time and were 64 and 70% higher, respectively, than resting rate at 150 min, whereas UCR was elevated by 86% with no significant change in state 3 respiration. UCP2 mRNA level showed a 5- and 4-fold increase, respectively, after 45 and 90 min of exercise, but returned to resting level at 120 and 150 min. Mitochondrial ROS production and membrane potential (Deltapsi) increased progressively until 120 min, followed by a decrease to the resting level at 150 min. MnSOD mRNA abundance showed a 2-fold increase at 120 min but MnSOD activity did not change with exercise. Training significantly increased mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) ratio, respiratory control ratio, and MnSOD activity, whereas exercise-induced state 4 respiration, UCR, ROS production, and Deltapsi were attenuated in the trained rats. We conclude that (1) UCP2 mRNA expression and activity in rat heart can be upregulated during prolonged exercise, which may reduce cross-membrane Deltapsi and thus ROS production; and (2) endurance training can blunt exercise-induced UCP2 and UCR, and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.  相似文献   

8.
Summary The effects of body size and phylogeny on metabolic capacities were examined by comparing the mitochondrial capacities of 6 mammalian and 4 reptilian species representing 100-fold body weight ranges. The mammals examined included 3 eutherian, 2 marsupial and a monotreme species and the reptiles 2 saurian, 1 crocodilian and 1 testudine species. The tissues examined were liver, kidney, brain, heart, lung and skeletal muscle. Allometric equations were derived for tissue weights, mitochondrial volume densities, internal mitochondrial membrane surface area densities, tissue mitochondrial membrane surface areas both per gram and per total tissue and summated tissue mitochondrial membrane surface areas. For the mammals and reptiles studied a 100% increase in body size resulted in average increases of 68% in internal organ size and 107% in skeletal muscle mass. Similarly, total organ mitochondrial membrane surface areas increase in mammals and reptiles by an average 54% and for skeletal muscle by an average 96%. These values are similar to increases in standard (54 and 71%) and maximum (73 and 77%) organismal metabolism values found by other authors for mammals and reptiles respectively. Although the allometric exponents (or rates of change with increasing body size) of the mitochondrial parameters in mammals and reptiles are statistically the same, in general the total amount of mitochondrial membrane surface area in the mammalian tissues are four times greater than found in the reptilian tissues. These differences were not the result of any single ‘quantum’ factor but are the result of the mammals having relatively larger tissues with a greater proportion of their volume occupied by mitochondria and to a lesser extent increases in the internal mitochondrial membrane surface area densities. Mitochondrial volume density from this present study would appear to be the major factor involved in changing weight specific metabolism of tissues both as a result of changes in body size and in the evolution of endothermy in mammals from reptiles.  相似文献   

9.
Mammalian heart development, from the time of weaning until adulthood, is characterized by progressive and significant enhancement in functional performance. Aerobic metabolism and contractile protein ATPase activity increase in parallel with augmented cardiac function. The present studies examined the potential contribution of phosphorylcreatine shuttle enzymes to the developmentally linked alterations in heart performance. Mitochondrial ATPase specific activity was not altered between weanling and adult heart; however, creatine kinase activity was enhanced approximately threefold. Myofibrillar ATPase activity doubled over the developmental time course, while creatine kinase activity increased to an even greater extent. Enhanced myofibrillar ATPase activity was not due to alterations in either calcium sensitivity or ATPase activity measured in purified myosin. Both the mitochondrial and myofibrillar creatine kinase enzyme activities are enhanced during normal heart growth; however, relatively greater enhancement of the myofibrillar component occurs. Thus, enzymatic reactions comprising the phosphorylcreatine shuttle system are dramatically increased during normal heart development. This mechanism deserves consideration as a potentially powerful contributor to enhanced cardiac function during the perinatal period.  相似文献   

10.
Chen SS  Black CC 《Plant physiology》1983,71(2):373-378
The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased.

The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%.

Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes.

  相似文献   

11.
The purpose of the present study was to evaluate the role of exercise training on the development of papain-induced emphysema in rats. Our hypothesis was that the increase in pulmonary tissue stretching associated with exercise could increase the severity of a protease-induced emphysema. Wistar rats were randomly assigned to four groups (n = 10 for each group) that received, respectively, intratracheal infusion of papain (6 mg in 1 ml of 0.9% NaCl) or vehicle and were submitted or not to a protocol of exercise on a treadmill. Rats exercised at 13.3 m/min, 6 days/wk, for 9 wk (increasing exercise time, from 10 to 35 min). We measured respiratory system elastance and resistance, the size and weight of the heart, and pulmonary mean linear intercept (Lm). After 9 wk of exercise training, there were no differences in respiratory system resistance and elastance values among the four experimental groups. Volume of the heart was significantly greater in rats submitted to exercise training (P = 0.007) compared with sedentary rats due to increases in volumes of both right and left cardiac chambers. Lm was significantly greater in rats that received papain compared with saline-infused rats (P = 0.025). Surprisingly, this was true, even though there was no significant decrease in elastance, possibly due to connective tissue remodeling. However, Lm was significantly greater in papain + exercise rats compared with rats that received papain and were not submitted to exercise. We conclude that exercise training can increase alveolar damage induced by papain infusion.  相似文献   

12.
Marsupials lack brown adipose tissue, and therefore rely exclusively on other tissues for thermogenesis. To determine the magnitude of phenotypic plasticity of the liver in response to changing metabolic demand, gray short-tailed opossums (M. domestica) were exposed to thermoneutral (28 degrees C) or cold (9-12 degrees C) conditions continuously for 6 weeks. Half of each group was also endurance trained with a treadmill program during their respective temperature exposure. Mass specific summit metabolism (VO(2)summit) increased 11% following cold acclimation, though there was no significant main effect by training on VO(2)summit. To estimate the contribution of the liver to whole animal oxidative activity, we determined liver mass, mitochondrial volume density, and total mitochondrial volume. Relative liver mass was 48% greater in cold-acclimated animals, whereas training had no effect on liver mass. The stereological analysis of hepatocyte ultrastructure suggests the percentage of intracellular volumes remained unchanged in response to either aerobic challenge. Thus, following cold-acclimation, there is a 20% increase in the total mitochondrial volume of the liver. This increase could account for nearly half (44%) of the observed increase in whole animal VO(2)summit following cold exposure.  相似文献   

13.
The adaptation of mitochondrial ATP production rate (MAPR) to training and detraining was evaluated in nine healthy men. Muscle samples (approximately 60 mg) were obtained before and after 6 wk of endurance training and after 3 wk of detraining. MAPR was measured in isolated mitochondria by a bioluminometric method. In addition, the activities of mitochondrial and glycolytic enzymes were determined in skeletal muscle. In response to training, MAPR increased by 70%, with a substrate combination of pyruvate + palmitoyl-L-carnitine + alpha-ketoglutarate + malate, by 50% with only pyruvate + malate, and by 92% with palmitoyl-L-carnitine + malate. With detraining MAPR decreased by 12-28% from the posttraining rate (although not significantly for all substrates). No differences were found when MAPR was related to the protein content in the mitochondrial fraction. The largest increase in mitochondrial enzyme activities induced by training was observed for cytochrome-c oxidase (78%), whereas succinate cytochrome c reductase showed only an 18% increase. The activity of citrate synthase increased by 40% and of glutamate dehydrogenase by 45%. Corresponding changes in maximal O2 uptake were a 9.6% increase by training and a 6.0% reversion after detraining. In conclusion, both MAPR and mitochondrial enzyme activities are shown to increase with endurance training and to decrease with detraining.  相似文献   

14.
Pig heart citrate synthase and mitochondrial malate dehydrogenase interact in polyethylene glycol solutions as indicated by increased solution turbidity. A large percentage of both enzymes sediments when mixtures of the two in polyethylene glycol are centrifuged, whereas little if any of either enzyme sediments in the absence of the other. The observed interaction is highly specific in that neither cytosolic malate dehydrogenase nor nine other proteins showed evidence of specific interaction with either pig heart citrate synthase or mitochondrial malate dehydrogenase. Escherichia coli citrate synthase did not interact with pig heart citrate synthase, but did show evidence of interaction with pig heart mitochondrial malate dehydrogenase. The relation between enzyme behavior in polyethylene glycol solution and in the mitochondrion and the significance of possible in vivo interactions between citrate synthase and mitochondrial malate dehydrogenase are discussed.  相似文献   

15.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

16.
Little information is presently available concerning mitochondrial respiratory and oxidative phosphorylation function in the normal human heart during growth and development. We investigated the levels of specific mitochondrial enzyme activities and content during cardiac growth and development from the early neonatal period (10-20 days) to adulthood (67 years). Biochemical analysis of enzyme specific activities and content and mitochondrial DNA (mtDNA) copy number was performed with left ventricular tissues derived from 30 control individuals. The levels of cytochrome c oxidase (COX) and complex V specific activity, mtDNA copy number and COX subunit II content remained unchanged in contrast to increased citrate synthase (CS) activity and content. The developmental increase in CS activity paralleled increasing CS polypeptide content, but was neither related to overall increases in mitochondrial number nor coordinately regulated with mitochondrial respiratory enzyme activities. Our findings of unchanged levels of cardiac mitochondrial respiratory enzyme activity during the progression from early childhood to older adult contrasts with the age-specific regulation found with CS, a Krebs cycle mitochondrial enzyme.  相似文献   

17.
Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.  相似文献   

18.
To determine the mechanisms underlying increased aerobic power in response to exercise training in octogenarians, we studied mildly frail elderly men and women randomly assigned to an exercise group (n = 22) who participated in a training program of 6 mo of physical therapy, strength training, and walking followed by 3 mo of more intense endurance exercise at 78% of peak heart rate or a control sedentary group (n = 24). Peak O2 consumption (V(O2 peak)) increased 14% in the exercise group (P < 0.0001) but decreased slightly in controls. Training induced 14% increase (P = 0.027) in peak exercise cardiac output (Q), determined via acetylene re-breathing, and no change in arteriovenous O2 content difference. The increase in Q was mediated by increases in heart rate (P = 0.009) and probably stroke volume (P = 0.096). Left ventricular stroke work also increased significantly. In the men, the increase in V(O2 peak) was exclusively due to a large increase in peak Q (22%). In the women, the gain in V(O2 peak) was due to small increases in Q and O2 extraction from skeletal muscles. Pulse pressure normalized for stroke volume and arterial elastance during peak effort did not change with training. Controls showed no changes. The results suggest that, although frail octogenarians have a diminished capacity for improvement in aerobic power in response to exercise training, this adaptation is mediated mostly by an increase in Q during peak effort. Furthermore, Q likely plays a greater role in the adaptive increase in V(O2 peak) in old men than old women.  相似文献   

19.
The heart is known to respond to a program of chronic exercise in ways that enhance cardiac function. However, the cellular mechanisms involved in training-induced improvements in the contractile function of the myocardium are not known. In this study we tested the hypothesis that increased contractility of the myocardium associated with exercise training is due, in part, to increases in the Ca(2+) sensitivity of steady-state tension. Female Sprague-Dawley rats were randomly divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise (1 h/day, 5 days/wk, 26 m/min, 20% grade). Evidence of training effect included a 5.9% increase in heart mass, increases in heart weight-to-body weight ratio, and a 60% increase in skeletal muscle citrate synthase activity in T rats compared with C rats. After the training program, cardiac myocytes were isolated from T and C hearts. Myocytes were chemically skinned (i.e., the sarcolemma was removed) and attached to a force transducer, and steady-state tension was determined in solutions of various Ca(2+) concentrations ([Ca(2+)]). Myocytes isolated from the hearts of T rats showed a significantly (P < 0.01) increased sensitivity of tension to [Ca(2+)]. The [Ca(2+)] giving 50% of maximal tension (pCa(50)) was 5.90 +/- 0.033 and 5.82 +/- 0.023 (SD) in T and C myocytes, respectively (n = 70 myocytes/group). This result suggests that exercise training affects the myofibrillar proteins, such that Ca(2+) sensitivity is increased, and that this may be the mechanism that underlies, at least in part, the effect of training to increase myocardial contractility.  相似文献   

20.
Several different exercise regimens varied in the severity of tissue damage induced. Therefore, this study investigated the effects of a single bout of exercise versus endurance training in heart and skeletal muscles with different predominant fiber types on indices of mitochondrial, endoplasmic reticulum (ER) integrity and protein degradation. Male Wistar rats performed different treadmill exercise protocols: exhaustive, maximal exhaustive, eccentric, training and exhaustive exercise after training. The maximal and eccentric exercises resulted in a significant loss of integrity of the sarcoplasmic and ER muscle, while no changes were observed in cardiac muscle. Mitochondrial membrane fluidity measured by the fluorescence polarization method was significantly increased post-acute exercises in heart and oxidative muscles. Regular exercise can stabilize and preserve the viscoelastic nature of mitochondrial membranes in both tissues. The highest increase in carbonyl content was obtained in heart after exhaustive exercise protocol, from 1+/-0.1 to 3.6+/-0.14 nmol mg protein(-1), such increase were not found after regular exercise with values significantly decreased. Nitrate heart levels showed attenuated generation of nitric oxide after training. Muscle protein oxidation was produced in all exhaustive exercises including eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号