共查询到20条相似文献,搜索用时 15 毫秒
1.
Nurizzo D Baker HM He QY MacGillivray RT Mason AB Woodworth RC Baker EN 《Biochemistry》2001,40(6):1616-1623
Human transferrin (Tf) is responsible for the binding and transport of iron in the bloodstream of vertebrates. Delivery of this bound iron to cells occurs by a process of receptor-mediated endocytosis during which Tf releases its iron at the reduced endosomal pH of approximately 5.6. Iron release from Tf involves a large conformational change in which the two domains that enclose the binding site in each lobe move apart. We have examined the role of two lysines, Lys206 and Lys296, that form a hydrogen-bonded pair close to the N-lobe binding site of human Tf and have been proposed to form a pH-sensitive trigger for iron release. We report high-resolution crystal structures for the K206A and K296A mutants of the N-lobe half-molecule of Tf, hTf/2N, and quantitative iron release data on these mutants and the double mutant K206A/K296A. The refined crystal structures (for K206A, R = 19.6% and R(free) = 23.7%; for K296A, R= 21.2% and R(free) = 29.5%) reveal a highly conserved hydrogen bonding network in the dilysine pair region that appears to be maintained even when individual hydrogen bonding groups change. The iron release data show that the mutants retain iron to a pH 1 unit lower than the pH limit of wild type hTf/2N, and release iron much more slowly as a result of the loss of the dilysine interaction. Added chloride ions are shown to accelerate iron release close to the pH at which iron is naturally lost and the closed structure becomes destabilized, and to retard it at higher pH. 相似文献
2.
The effect of lead on cellular iron metabolism has been investigated using human erythroleukemia (K562) cells. When the cells were cultured with 100 m Pb2+ for 48 h, the rate of cellular iron uptake from transferrin decreased to 46% of that in untreated cells. Scatchard analysis of the binding data revealed that this reduction was the result of a decrease in the number of transferrin receptors rather than an alteration in ligand-receptor affinity. The results of immunoprecipitation of transferrin receptors on the cell surface also confirmed the decreased expression of transferrin receptors by lead-treated cells. The down-regulation of transferrin receptors by treatment with lead did not result from a decrease in the total amount of the receptor, as determined by immunoblotting. Moreover, the biosynthesis of the receptor was unaffected by lead treatment. Thus, the down-regulation of surface transferrin receptors in lead-treated cells might be due to a redistribution of receptors rather than an actual loss of receptors from the cell. Using kinetic analysis, it was shown that redistribution of the receptor did not result from the alteration in the rates of transferrin receptor recycling. A comparison of the amounts of transferrin receptor on the cell surface and in the cycling pool revealed that the sequestration of the receptor from normal flow through the cycle might cause down-regulation of the surface receptor. 相似文献
3.
Halbrooks PJ Mason AB Adams TE Briggs SK Everse SJ 《Journal of molecular biology》2004,339(1):217-226
A unique feature of the mechanism of iron binding to the transferrin (TF) family is the synergistic relationship between metal binding and anion binding. Little or no iron will bind to the protein without concomitant binding of an anion, physiologically identified as carbonate. Substitution of oxalate for carbonate produces no significant changes in polypeptide folding or domain orientation in the N-lobe of human serum TF (hTF) as revealed by our 1.2A structure. The oxalate is able to bind to the iron in a symmetric bidentate fashion, which, combined with the low pK(a) of the oxalate anion, makes iron displacement more difficult as documented by both iron release kinetic and equilibrium data. Characterization of an N-lobe in which the arginine at position 124 is mutated to alanine reveals that the stabilizing effect of oxalate is even greater in this mutant and nearly cancels the destabilizing effect of the mutation. Importantly, incorporation of oxalate as the synergistic anion appears to completely inhibit removal of iron from recombinant full-length hTF by HeLa S(3) cells, strongly indicating that oxalate also replaces carbonate in the C-lobe to form a stable complex. Kinetic studies confirm this claim. The combination of structural and functional data provides a coherent delineation of the effect of oxalate binding on hTF and rationalizes the results of many previous studies. In the context of iron uptake by cells, substitution of carbonate by oxalate effectively locks the iron into each lobe of hTF, thereby interfering with normal iron metabolism. 相似文献
4.
The antigen binding site of antibodies usually comprises associated heavy (V(H)) and light (V(L)) chain variable domains, but in camels and llamas, the binding site frequently comprises the heavy chain variable domain only (referred to as V(HH)). In contrast to reported human V(H) domains, V(HH) domains are well expressed from bacteria and yeast, are readily purified in soluble form and refold reversibly after heat-denaturation. These desirable properties have been attributed to highly conserved substitutions of the hydrophobic residues of V(H) domains, which normally interact with complementary V(L) domains. Here, we describe the discovery and characterisation of an isolated human V(H) domain (HEL4) with properties similar to those of V(HH) domains. HEL4 is highly soluble at concentrations of > or =3 mM, essentially monomeric and resistant to aggregation upon thermodenaturation at concentrations as high as 56 microM. However, in contrast to V(HH) domains, the hydrophobic framework residues of the V(H):V(L) interface are maintained and the only sequence changes from the corresponding human germ-line segment (V3-23/DP-47) are located in the loops comprising the complementarity determining regions (CDRs). The crystallographic structure of HEL4 reveals an unusual feature; the side-chain of a framework residue (Trp47) is flipped into a cavity formed by Gly35 of CDR1, thereby increasing the hydrophilicity of the V(H):V(L) interface. To evaluate the specific contribution of Gly35 to domain properties, Gly35 was introduced into a V(H) domain with poor solution properties. This greatly enhanced the recovery of the mutant from a gel filtration matrix, but had little effect on its ability to refold reversibly after heat denaturation. Our results confirm the importance of a hydrophilic V(H):V(L) interface for purification of isolated V(H) domains, and constitute a step towards the design of isolated human V(H) domains with practical properties for immunotherapy. 相似文献
5.
Proteins of the transferrin (Tf) family play a central role in iron homeostasis in vertebrates. In vertebrate Tfs, the four iron-binding ligands, 1 Asp, 2 Tyr, and 1 His, are invariant in both lobes of these bilobal proteins. In contrast, there are striking variations in the Tfs that have been characterized from insect species; in three of them, sequence changes in the C-lobe binding site render it nonfunctional, and in all of them the His ligand in the N-lobe site is changed to Gln. Surprisingly, mutagenesis of the histidine ligand, His249, to glutamine in the N-lobe half-molecule of human Tf (hTf/2N) shows that iron binding is destabilized and suggests that Gln249 does not bind to iron. We have determined the crystal structure of the H249Q mutant of hTf/2N and refined it at 1.85 A resolution (R = 0.221, R(free) = 0.246). The structure reveals that Gln249 does coordinate to iron, albeit with a lengthened Fe-Oepsilon1 bond of 2.34 A. In every other respect, the protein structure is unchanged from wild-type. Examination of insect Tf sequences shows that the K206.K296 dilysine pair, which aids iron release from the N-lobes of vertebrate Tfs, is not present in the insect proteins. We conclude that substitution of Gln for His does destabilize iron binding, but in the insect Tfs this is compensated by the loss of the dilysine interaction. The combination of a His ligand with the dilysine pair in vertebrate Tfs may have been a later evolutionary development that gives more sophisticated pH-mediated control of iron release from the N-lobe of transferrins. 相似文献
6.
Joanne Keenan Dermot Pearson Lorraine O’Driscoll Patrick Gammell Martin Clynes 《Cytotechnology》2006,51(1):29-37
DeltaFerrinTM, a yeast-derived recombinant human transferrin produced by Delta Biotechnology Ltd. (Nottingham UK), was found to be a suitable replacement for holo human transferrin in serum-free culture media of the MDCK cell line (chosen because of its transferrin dependence) in short-term screening assays. Long-term subculture was achieved with DeltaFerrinTM supporting growth equivalent to that of holo human transferrin. DeltaFerrinTM and a selection of chemical iron chelators were found in short-term assays to be equivalent to holo human transferrin in supporting growth of MDCK, BHK-21-PPI-C16 and Vero-PPI. In long-term subcultures, however, only DeltaFerrinTM was found to support cell growth in a manner essentially equivalent to holo human transferrin in all three cell lines. For both BHK and Vero variants tested, recombinant preproinsulin production was unaltered by replacing holo human transferrin with DeltaFerrinTM. As such, this is the first report of a recombinant human transferrin produced under animal-free conditions that can act as a universal iron chelator for cells grown in serum-free media (SFM). 相似文献
7.
Crystal structures of two mutants of adenylate kinase from Escherichia coli that modify the Gly-loop
Two mutants of adenylate kinase from Escherichia coli have been crystallized and analyzed by X-ray diffraction at resolutions of 3.4 and 2.4 Å, respectively. These mutants are Pro-9→Leu and Gly-10→Val. They were selected for their positions in the highly conserved Gly-loop forming a giant anion hole for the β-phosphate of ATP (GTP) in adenylate kinases, H-ras-p21, and other nucleotide-binding proteins. Mutants at these positions of H-ras-p21 cause cancer. In adenylate kinase these mutations cause smallish changes at the active site. Relating the structural changes to the known changes in catalysis indicates that these mutants hinder the induced-fit movements. As a side result we find that mutant Pro-9→Leu and wild-type form one very similar crystal packing contact that is crystallographic in one case and noncrystallographic in the other, while all other packing contacts and the space groups are quite at variance. © 1993 Wiley-Liss, Inc. 相似文献
8.
Wu J Yang J Kannan N Madhusudan Xuong NH Ten Eyck LF Taylor SS 《Protein science : a publication of the Protein Society》2005,14(11):2871-2879
Glu230, one of the acidic residues that cluster around the active site of the catalytic subunit of cAMP-dependent protein kinase, plays an important role in substrate recognition. Specifically, its side chain forms a direct salt-bridge interaction with the substrate's P-2 Arg. Previous studies showed that mutation of Glu230 to Gln (E230Q) caused significant decreases not only in substrate binding but also in the rate of phosphoryl transfer. To better understand the importance of Glu230 for structure and function, we solved the crystal structure of the E230Q mutant at 2.8 A resolution. Surprisingly, the mutant preferred an open conformation with no bound ligands observed, even though the crystals were grown in the presence of MgATP and the inhibitor peptide, IP20. This is in contrast to the wild-type protein that, under the same conditions, prefers the closed conformation of a ternary complex. The structure highlights the importance of the electrostatic surface not only for substrate binding and catalysis, but also for the mechanism for closing the active site cleft. This surface mutation clearly disrupts the recognition and binding of substrate peptide so that the enzyme prefers an open conformation that cannot trap ATP. This is consistent with the reinforcing concepts of conformational dynamics and the synergistic binding of ATP and substrate peptide. Another unusual feature of the structure is the observation of the entire N terminus (Gly1-Thr32) assumes an extended alpha-helix conformation. Finally, based on temperature factors, this mutant structure is more stable than the wild-type C-subunit in the apo state. 相似文献
9.
Pereira de Jésus-Tran K Côté PL Cantin L Blanchet J Labrie F Breton R 《Protein science : a publication of the Protein Society》2006,15(5):987-999
Androgens exert their effects by binding to the highly specific androgen receptor (AR). In addition to natural potent androgens, AR binds a variety of synthetic agonist or antagonist molecules with different affinities. To identify molecular determinants responsible for this selectivity, we have determined the crystal structure of the human androgen receptor ligand-binding domain (hARLBD) in complex with two natural androgens, testosterone (Testo) and dihydrotestosterone (DHT), and with an androgenic steroid used in sport doping, tetrahydrogestrinone (THG), at 1.64, 1.90, and 1.75 A resolution, respectively. Comparison of these structures first highlights the flexibility of several residues buried in the ligand-binding pocket that can accommodate a variety of ligand structures. As expected, the ligand structure itself (dimension, presence, and position of unsaturated bonds that influence the geometry of the steroidal nucleus or the electronic properties of the neighboring atoms, etc.) determines the number of interactions it can make with the hARLBD. Indeed, THG--which possesses the highest affinity--establishes more van der Waals contacts with the receptor than the other steroids, whereas the geometry of the atoms forming electrostatic interactions at both extremities of the steroid nucleus seems mainly responsible for the higher affinity measured experimentally for DHT over Testo. Moreover, estimation of the ligand-receptor interaction energy through modeling confirms that even minor modifications in ligand structure have a great impact on the strength of these interactions. Our crystallographic data combined with those obtained by modeling will be helpful in the design of novel molecules with stronger affinity for the AR. 相似文献
10.
CcmG, also designated DsbE, functions as a periplasmic protein thiol:disulfide oxidoreductase and is required for cytochrome c maturation. Here we report the crystal structures of Escherichia coli CcmG and its two mutants, P144A and the N-terminal fifty seven-residue deletion mutant, and two additional deletion mutants were studied by circular dichroism. Structural comparison of E. coli CcmG with its deletion mutants reveals that the N-terminal beta-sheet is essential for maintaining the folding topology and consequently maintaining the active-site structure of CcmG. Pro144 and Glu145 are key residues of the fingerprint region of CcmG. Pro144 is in cis-configuration, and it makes van der Waals interactions with the active-site disulfide Cys80-Cys83 and forms a C--H...O hydrogen bond with Thr82, helping stabilize the active-site structure. Glu145 forms a salt-bridge and hydrogen-bond network with other residues of the fingerprint region and with Arg158, further stabilizing the active-site structure. The cis-configuration of Pro144 makes the backbone nitrogen and oxygen of Ala143 exposed to solvent, favorable for interacting with binding partners. The key role of cis-Pro144 is verified by the P144A mutant, which contains trans-Ala144 and displays redox property changes. Structural comparison of E. coli CcmG with the recently reported structure of CcmG in complex with the N-terminal domain of DsbD reveals that Tyr141 undergoes conformational changes upon binding DsbD. A cis-proline located at the N-terminus of the first beta-strand of the betabetaalpha motif of the thioredoxin-like domain is a conserved structural feature of the thioredoxin superfamily. 相似文献
11.
Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A. 总被引:1,自引:1,他引:1 下载免费PDF全文
M. A. Pearson P. A. Karplus R. W. Dodge J. H. Laity H. A. Scheraga 《Protein science : a publication of the Protein Society》1998,7(5):1255-1258
The Tyr92-Pro93 peptide group of bovine pancreatic ribonuclease A (RNase A) exists in the cis conformation in the native state. From unfolding/refolding kinetic studies of the disulfide-intact wild-type protein and of a variant in which Pro93 had been replaced by Ala, it had been suggested that the Tyr92-Ala93 peptide group also exists in the cis conformation in the native state. Here, we report the crystal structure of the P93A variant. Although there is disorder in the region of residues 92 and 93, the best structural model contains a cis peptide at this position, lending support to the results of the kinetics experiments. We also report the crystal structure of the C[40, 95]A variant, which is an analog of the major rate-determining three-disulfide intermediate in the oxidative folding of RNase A, missing the 40-95 disulfide bond. As had been detected by NMR spectroscopy, the crystal structure of this analog shows disorder in the region surrounding the missing disulfide. However, the global chain fold of the remainder of the protein, including the disulfide bond between Cys65 and Cys72, appears to be unaffected by the mutation. 相似文献
12.
13.
14.
Two new zinc phosphonates with 2-hydroxyphosphonoacetic acid (HPAA) and 1-hydroxyethylidenediphosphonic acid (hedpH4), [Zn2{HO3PCH(OH)CO2}3]·2NH2(CH3)2·3H2O (1) and [Zn3{CH3C(OH)(PO3)2}2]·2NH2(CH3)2·H2O (2) have been synthesized under mixed-solvothermal conditions at 160 °C and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy and elemental analysis. The structure of compound 1 comprises Zn1O6 and Zn2O6 octahedra connected by [HO3PCH(OH)CO2]2− to form a 2D layered structure with one-dimensional channel system along c-axis direction, and the protonated dimethylamine cations are being located between two adjacent layers. Interestingly the layers of 1 arranged in an alternative sequence (ABAB). Compound 2 features a 3D framework structure with channels along the b- and c-axis, respectively. The charge-compensating protonated Hdma+ cations and solvate water molecules are located inside the channels along the c-axis. A notable feature for compound 2 is the presence of the alternate left- and right-handed helical chains in the structure. The luminescence properties of compounds 1 and 2 have also been studied. 相似文献
15.
Shu-Tao Xie 《Bioscience, biotechnology, and biochemistry》2013,77(9):1542-1549
Ubiquitin-activating enzyme (E1) is a key regulator in protein ubiquitination, which lies on the upstream of the ubiquitin-related pathways and determines the activation of the downstream enzyme cascade. Thus far, no structural information about the human ubiquitin-activating enzyme has been reported. We expressed and purified the N-terminal domains of human E1 and determined their crystal structures, which contain inactive adenylation domain (IAD) and the first catalytic cysteine half-domain (FCCH). This study presents the crystal structure of human E1 fragment for the first time. The main structure of both IAD and FCCH superimposed well with their corresponding domains in yeast Uba1, but their relative positions vary significantly. This work provides new structural insights in understanding the mechanisms of ubiquitin activation in humans. 相似文献
16.
G. de Jong C. C. A. Ammerlaan W. L. van Noort H. G. van Eijk G. L. van Landeghem P. C. D'Haese M. E. de Broe 《Biometals》1995,8(4):352-356
Transferrin saturated with Al3+ subjected to isoelectric focusing (IEF) in a pH gradient can be separated into four fractions, representing the apotransferrin, transferrin with aluminum at the metal binding site in the C- or N-terminal lobe, or both. The electrophoretic mobilities of these four fractions are identical to those of the iron-transferrin counterparts. Simultaneous binding of aluminum and iron to transferrin can also be demonstrated. The decreased saturation after IEF indicates that the affinity of transferrin for aluminum is low compared with its affinity for iron. This effect is particularly evident when bicarbonate is used as the synergistic anion in the loading procedure. In contrast, loading of transferrin with aluminum in the presence of oxalate produces a di-aluminum-transferrin complex that is stable during IEF. 相似文献
17.
Ou X Ji C Han X Zhao X Li X Mao Y Wong LL Bartlam M Rao Z 《Journal of molecular biology》2006,357(3):858-869
Homo sapiens L-alpha-glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes the reversible biological conversion of dihydroxyacetone (DHAP) to glycerol-3-phosphate. The GPD1 protein was expressed in Escherichia coli, and purified as a fusion protein with glutathione S-transferase. Here we report the apoenzyme structure of GPD1 determined by multiwavelength anomalous diffraction phasing, and other complex structures with small molecules (NAD+ and DHAP) by the molecular replacement method. This enzyme structure is organized into two distinct domains, the N-terminal eight-stranded beta-sheet sandwich domain and the C-terminal helical substrate-binding domain. An electrophilic catalytic mechanism by the epsilon-NH3+ group of Lys204 is proposed on the basis of the structural analyses. In addition, the inhibitory effects of zinc and sulfate on GPDHs are assayed and discussed. 相似文献
18.
Rosell A Valencia E Parés X Fita I Farrés J Ochoa WF 《Journal of molecular biology》2003,330(1):75-85
The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class. 相似文献
19.
Meijers R Lai CC Yang Y Liu JH Zhong W Wang JH Reinherz EL 《Journal of molecular biology》2005,345(5):1099-1110
Cytotoxic T lymphocyte (CTL) responses against influenza A virus in C57BL/6 mice are dominated by a small number of viral peptides among many that are capable of binding to major histocompatibility complex (MHC) class I molecules. The basis of this limited immune recognition is unknown. Here, we present X-ray structures of MHC class I molecules in complex with two immunodominant epitopes (PA(224-233)/D(b) and PB1(703-711)/K(b)) and one non-immunogenic epitope (HA(468-477)/D(b)) of the influenza A virus. The immunodominant peptides are each characterized by a bulge at the C terminus, lifting P6 and P7 residues out of the MHC groove, presenting featured structural elements to T-cell receptors (TCRs). Immune recognition of PA(224-233)/D(b) will focus largely on the exposed P7 arginine residue. In contrast, the non-immunogenic HA(468-477) peptide lacks prominent features in this C-terminal bulge. In the K(b)-bound PB1(703-711) epitope, the bulge results from a non-canonical binding motif, such that the mode of presentation of this peptide strongly resembles that of D(b)-bound peptides. Given that PA(224-233)/D(b), PB1(703-711)/K(b) and the previously defined NP(366-374)/D(b) epitopes dominate the primary response to influenza A virus in C57BL/6 mice, our findings indicate that residues of the C-terminal bulge are important in selection of the immunodominant CTL repertoire. 相似文献
20.
Gol Nam Yi Shi Myongchol Ryu Qihui Wang Hao Song Jun Liu Jinghua Yan Jianxun Qi George F Gao 《蛋白质与细胞》2013,4(10):761
Leukocyte immunoglobulin-like receptors (LILRs), also called CD85s, ILTs, or LIRs, are important mediators of immune activation and tolerance that contain tandem immunoglobulin (Ig)-like folds. There are 11 (in addition to two pseudogenes) LILRs in total, two with two Ig-like domains (D1D2) and the remaining nine with four Ig-like domains (D1D2D3D4). Thus far, the structural features of the D1D2 domains of LILR proteins are well defi ned, but no structures for the D3D4 domains have been reported. This is a very important fi eld to be studied as it relates to the unknown functions of the D3D4 domains, as well as their relative orientation to the D1D2 domains on the cell surface. Here, we report the crystal structures of the D3D4 domains of both LILRB1 and LILRB2. The two Iglike domains of both LILRB1-D3D4 and LILRB2-D3D4 are arranged at an acute angle (~60°) to form a bent structure, resembling the structures of natural killer inhibitory receptors. Based on these two D3D4 domain structures and previously reported D1D2/HLA I complex structures, two alternative models of full-length (four Ig-like domains) LILR molecules bound to HLA I are proposed. 相似文献