首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Gene transfer efficiency into primitive hematopoietic cells may be limited by their expression of surface receptors allowing vector entry. Vectors pseudotyped with the vesicular stomatitis virus (VSV-G) envelope do not need receptors to enter cells, and therefore may provide superior transduction efficiency. METHODS: Using a competitive repopulation model in the rhesus macaque, we examined in vivo gene marking levels of blood cells transduced with two vectors: (i) a VSV-G pseudotyped retrovirus and (ii) a conventional amphotropic retrovirus. The VSV-G vector, containing the human glucose-6-phosphate dehydrogenase (G6PD) gene, was constructed for treatment of severe hemolytic anemia caused by G6PD deficiency. Three myeloablated animals were transplanted with peripheral blood CD34+ cells, half of which were transduced with the VSV-G vector and the other half with the amphotropic vector. RESULTS: In all animals post-transplantation, levels of in vivo marking in circulating granulocytes and mononuclear cells were similar: 1% or less with both vectors. In one animal, the human G6PD enzyme transferred by the VSV-G vector was expressed in erythrocytes, early after transplantation, at a level of 45% of the endogenous rhesus G6PD protein. CONCLUSIONS: In a clinically relevant animal model, we found similar in vivo marking with a VSV-G pseudotyped and a standard amphotropic oncoretroviral vector. Amphotropic receptor expression may not be a limiting factor in transduction efficiency, but VSV-G pseudotypes possess other practical advantages that may make them advantageous for clinical use.  相似文献   

2.
Summary A new class of retroviral vector pseudotypes have an expanded host species range and can be concentrated to high titers by ultracentrifugation. These pantropic vectors contain the genome of the murine leukemia virus-based vectors and the envelope protein of vesicular stomatitis virus substituted for the amphotropic envelope protein. We tested (a) the ability of pseudotyped (pantropic) and unmodified (amphotropic) vectors to stably infect three diffeentXenopus laevis cell lines, including one derived from the embryonic retina; and (b) the ability of the concentrated pseudotyped virus to infect embryos and to mediate foreign gene expression in the embryonic CNS. Expression of the neomycin phosphotransferase gene and single copy integration of the provirus into the genome of the cell lines was demonstrated. Surprisingly, the amphotropic and pantropic vectors generated neomycin-resistant clones with similar efficiency. PCR amplification of genomic DNA from single stage 10, 20, and 25 embryos microinjected in the blastocoel or neural tube cavities with concentrated pantropic vector (108 cfu/ml) revealed proviral DNA. Microinjection of a concentrated pantropic vector containing the coding sequence for the β-galactosidase gene into the neural tube lumen of 24-h embryos yielded β-galactosidase expressing cells in the brain. Thus, retroviral vectors provide an additional approach to existing strategies for gene transfer inXenopus embryos and cell lines.  相似文献   

3.
4.
Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic arenavirus shown to infect a broad range of different cell types. Here, we combined the beneficial characteristics of the LCMV glycoprotein (LCMV-GP) and those of retroviral vectors to generate a new, safe, and efficient gene transfer system. These LCMV-GP pseudotypes were systematically compared with vectors containing the widely used amphotropic murine leukemia virus envelope (A-MLVenv) or the vesicular stomatitis virus G protein (VSV-G). Production of LCMV-GP-pseudotyped oncoretroviral and lentiviral vectors by transient transfection resulted in vector titers similar to those with A-MLVenv or VSV-G. In contrast to A-MLVenv particles, LCMV-GP pseudotypes could be efficiently concentrated by ultracentrifugation without loss of vector titer. Unlike the cell-toxic VSV-G, a stable retroviral packaging cell line constitutively expressing LCMV-GP could be established. Vectors pseudotyped with LCMV-GP efficiently transduced many cell lines from different species and tissues relevant for gene therapy. Transduction of human glioma cells was studied in detail. These cells are a major target for cancer gene therapy and were transduced more efficiently with LCMV-GP-pseudotyped vectors than with the generally used A-MLVenv particles. The high stability, low toxicity, and broad host range make LCMV-GP-pseudotyped vectors attractive for gene transfer applications. The recombinant LCMV-GP-pseudotyped vectors will also allow functional characterization of naturally occurring and recombinant LCMV-GP variants.  相似文献   

5.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

6.
Wu M  Mergia A 《Journal of virology》1999,73(5):4498-4501
Foamy viruses are nonpathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. We have previously demonstrated the utility of simian foamy virus type 1 (SFV-1) as a vector system by transient expression assay (M. Wu et al., J. Virol. 72:3451-3454, 1998). In this report, we describe the first stable packaging cell lines for foamy virus vectors based on SFV-1. We developed two packaging cell lines in which the helper DNA is placed under the control of either a constitutive cytomegalovirus (CMV) immediate-early gene or inducible tetracycline promoter for expression. Although the constitutive packaging expressing cell line had a higher copy number of packaging DNA, the inducible packaging cell line produced four times more vector particles. This result suggested that the structural gene products in the constitutively expressing packaging cell line were expressed at a level that is not toxic to the cells, and thus vector production was reduced. The SFV-1 vector in the presence of vesicular stomatitis virus envelope protein G (VSV-G) produced an insignificant level of transduction, indicating that foamy viruses could not be pseudotyped with VSV-G to generate high-titer vectors. The availability of stable packaging cell lines represents a step toward the use of an SFV-1 vector delivery system that will allow scaled-up production of vector stocks for gene therapy.  相似文献   

7.
Although transduction with amphotropic murine leukemia virus (MLV) vectors has been optimized successfully for hematopoietic differentiated progenitors, gene transfer to early hematopoietic cells (stem cells) is still highly restricted. A similar restriction to gene transfer was observed in the mouse stem cell line FDC-Pmix compared with transfer in the more mature myeloid precursor cell line FDC-P1 and the human erythroleukemia cell line K562. Gene transfer was not improved when the vector was pseudotyped with gp70SU of the 10A1 strain of MLV, which uses the receptor of the gibbon ape leukemia virus (Pit1), in addition to the amphotropic receptor (Pit2). Although 10A1 and amphotropic gp70SU bound to FDC-P1, K562, and fibroblasts, no binding to FDC-Pmix cells was detected. This indicates that FDC-Pmix cells lack functional Pit2 and Pit1 receptors. Pseudotyping with the vesicular stomatitis virus G protein improved transduction efficiency in FDC-Pmix stem cells by 2 orders of magnitude, to fibroblast levels, confirming a block to retroviral infection at the receptor level.  相似文献   

8.
Vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in the lung; however, we have found that while gene expression can persist for at least 8 months in mice, it was reduced dramatically in rabbits over a period of 2 months. The efficiency and persistence of AAV2-mediated gene expression in the human lung have yet to be determined, but it seems likely that readministration will be necessary over the lifetime of an individual. Unfortunately, we have found that transduction by a second administration of an AAV2 vector is blocked, presumably due to neutralizing antibodies generated in response to the primary vector exposure. Here, we have explored the use of AAV2 vectors pseudotyped with capsid proteins from AAV serotypes 2, 3, and 6 for readministration in the mouse lung. We found that an AAV6 vector transduced airway epithelial and alveolar cells in the lung at rates that were at least as high as those of AAV2 pseudotype vectors, while transduction rates mediated by AAV3 were much lower. AAV6 pseudotype vector transduction was unaffected by prior administration of an AAV2 or AAV3 vector, and transduction by an AAV2 pseudotype vector was unaffected by prior AAV6 vector administration, showing that cross-reactive neutralizing antibodies against AAV2 and AAV6 are not generated in mice. Interestingly, while prior administration of an AAV2 vector completely blocked transduction by a second AAV2 pseudotype vector, prior administration of an AAV6 vector only partially inhibited transduction by a second administration of an AAV6 pseudotype vector. Analysis of sera obtained from mice and humans showed that AAV6 is less immunogenic than AAV2, which helps explain this finding. These results support the development of AAV6 vectors for lung gene therapy both alone and in combination with AAV2 vectors.  相似文献   

9.
We report here the production of transgenic quails using a replication-defective pantropic retroviral vector based on Moloney murine leukemia virus (MoMLV) pseudotyped with vesicular stomatitis virus G protein (VSV-G). The retroviral vector was injected into laid quail embryos at the blastodermal stage, and the embryos were incubated to hatch to produce G(0) transgenic quails. Among 134 embryos subjected to viral injection, 37 hatched. The viral vector sequence was detected in the tissues of all G(0) quails. The germ-line transmission efficiency of G(0) quails mated with nontransgenic quails was more than 80% on average. Southern blot analysis revealed that the G(1) transgenic progeny had one to three copies of the transgene. The expression of vector-encoded neomycin-resistance gene under the control of the Rous sarcoma virus (RSV) promoter was observed in several tissues including heart and muscle of both G(1) and G(2) transgenic offspring. Due to the high frequency of germ-line transmission, this method may markedly facilitate the production of transgenic avian.  相似文献   

10.
Vectors derived from lentiviruses provide a promising gene delivery system. We examined the in vivo gene transfer efficiency and tissue or cell tropism of a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the glycoproteins from Ross River Virus (RRV). RRV glycoproteins were efficiently incorporated into FIV virions, generating preparations of FIV vector, which after concentration attain titers up to 1.5 x 10(8) TU/ml. After systemic administration, RRV-pseudotyped FIV vectors (RRV/FIV) predominantly transduced the liver of recipient mice. Transduction efficiency in the liver with the RRV/FIV was ca. 20-fold higher than that achieved with the vesicular stomatitis virus G protein (VSV-G) pseudotype. Moreover, in comparison to VSV-G, the RRV glycoproteins caused less cytotoxicity, as determined from the levels of glutamic pyruvic transaminase and glutamic oxalacetic transaminase in serum. Although hepatocytes were the main liver cell type transduced, nonhepatocytes (mainly Kupffer cells) were also transduced. The percentages of the transduced nonhepatocytes were comparable between RRV and VSV-G pseudotypes and did not correlate with the production of antibody against the transgene product. After injection into brain, RRV/FIV preferentially transduced neuroglial cells (astrocytes and oligodendrocytes). In contrast to the VSV-G protein that targets predominantly neurons, <10% of the brain cells transduced with the RRV pseudotyped vector were neurons. Finally, the gene transfer efficiencies of RRV/FIV after direct application to skeletal muscle or airway were also examined and, although transgene-expressing cells were detected, their proportions were low. Our data support the utility of RRV glycoprotein-pseudotyped FIV lentiviral vectors for hepatocyte- and neuroglia-related disease applications.  相似文献   

11.
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.  相似文献   

12.
Alphavirus glycoproteins have broad host ranges. Human immunodeficiency virus type 1 (HIV-1) vectors pseudotyped with their glycoproteins could extend the range of tissues that can be transduced in both humans and animal models. Here, we established stable producer cell lines for HIV vectors pseudotyped with alphavirus Ross River virus (RRV) and Semliki Forest virus (SFV) glycoproteins E2E1. RRV E2E1-stable clones could routinely produce high-titer pseudotyped vectors for at least 5 months. SFV E2E1-stable clones, however, produced relatively low titers. We examined the properties of RRV E2E1-pseudotyped vectors [HIV-1(RRV)] and compared them with amphotropic murine leukemia virus Env- and vesicular stomatitis virus glycoprotein G-pseudotyped vectors. HIV-1(RRV) displayed a number of characteristics which would be advantageous in ex vivo and in vivo experiments, including resistance to inactivation by heat-labile components in fresh human sera and thermostability at 37 degrees C. Upon single-step concentration by ultracentrifugation of HIV-1(RRV), we could achieve vector stocks with titers up to 6 x 10(7) IU/ml. HIV-1(RRV) efficiently transduced cells from several different species, including murine primary dendritic cells, but failed to transduce human and murine T cells as well as human hematopoietic stem cells (HSC). These results indicate that HIV-1(RRV) could be used in a number of applications including animal model experiments and suggest that expression of RRV cellular receptors is limited or absent in certain cell types such as T cells and human HSC.  相似文献   

13.
Yamada K  McCarty DM  Madden VJ  Walsh CE 《BioTechniques》2003,34(5):1074-8, 1080
Recombinant lentiviral vectors stably transduce both dividing and nondividing cells. Virus pseudotyping with vesicular stomatitis virus envelope G (VSV-G) protein broadens the host range of lentiviral vector and enables vector concentration by ultra-centrifugation. However, as a result of virus vector concentration, contaminating protein debris derived from vector-producing cell culture media is toxic to target cells and reduces the transduction efficiency. Here we report a new and rapid technique for purifying lentivirus vector using the strong anion exchange column that significantly improves gene transfer rates. We purified VSV-G pseudotyped self-inactivating lentivirus vector and obtained two protein elution peaks (Peak 1 and Peak 2) corresponding to transducing activity. Peak 1 viral particles were 4-8 times more effective in transducing target cells than Peak 2 or non-purified (pre-HPLC) viral particles. We used purified lentivirus vector expressing the human Fanconi anemia group A (FANCA) gene to transduce murine hematopoietic stem/progenitor cells. We observed a consistent 2- to 3-fold increase in gene transfer rates using Peak 1 purified virus compared with non-purified virus. We conclude that the purification method using the HPLC system provides the highly purified virus vector that reduces cell toxicity and significantly improves gene transfer in primary cells.  相似文献   

14.
Ross River virus (RRV) and Semliki Forest virus (SFV) are two alphaviruses that have a high degree of amino acid homology, as well as a very broad host range. We show here that envelope glycoproteins derived from both viruses can pseudotype human immunodeficiency virus type 1 (HIV-1)-derived lentivirus vectors. Both RRV and SFV glycoproteins considerably expand the host range of the lentivirus vector, and vectors can be efficiently concentrated by ultracentrifugation. A systematic analysis comparing the alphaviral glycoproteins to the vesicular stomatitis virus glycoprotein (VSV-G) revealed that lentivirus vectors incorporate RRV glycoproteins with an efficiency comparable to that of VSV-G. Both pseudotypes have comparable physical titers, but infectious titers with the RRV pseudotype are lower than with VSV-G. Incorporation of SFV glycoproteins into lentivirus vector is less efficient, leading to decreased physical and infectious titers. The transduction rates with VSV-G-, RRV-, and SFV-pseudotyped lentivirus vectors into adherent cell lines can be significantly increased by using a combination of Polybrene and plates coated with CH-296 recombinant fibronectin fragments. Together, our data suggest that RRV and SFV glycoproteins might be suitable as alternatives to VSV-G for pseudotyping lentivirus vectors.  相似文献   

15.
为了解重症急性呼吸综合征冠状病毒(SARS—CoV)表面S蛋白的受体结合功能域及其在宿主细胞上的作用受体,应用PCR技术从SARS—CoV cDNA中克隆到S蛋白的全长基因,并构建了S蛋白与疱疹性口腔炎病毒胞膜蛋白(VSV—G)融合表达载体pVSV—G‘-SG,进而为制备含有SARS—CoVS蛋白膜外区的逆转录病毒假毒粒奠定了实验基础。  相似文献   

16.
10A1 murine leukemia virus can enter cells by using either of two different cell surface phosphate transport proteins, the gibbon ape leukemia virus receptor Glvr-1 (Pit-1) or the amphotropic retrovirus receptor Ram-1 (Pit-2). Glvr-1 and Ram-1 are widely expressed in different tissues, but the relative amounts of each are highly variable. We have developed retrovirus packaging cell lines based on 10A1 virus to take advantage of this dual receptor utilization to improve gene transfer rates in somatic cells of animals and humans, in which the relative levels of the two receptors are not always known. Optimization of the Env expression vector allowed the generation of packaging lines that produce helper-free vector titers up to 10(7)/ml. By interference analysis, we found that a 10A1 pseudotype retroviral vector can utilize Ram-1 for efficient entry into mouse, rat, and human cells and can utilize Glvr-1 for entry into mouse and human cells but not for entry into rat cells. The 10A1 pseudotype vector efficiently enters mouse cells by using Glvr-1, while entry into human cells is much less efficient. Thus, the 10A1 pseudotype packaging cells may be advantageous compared with the standard amphotropic packaging cells because vectors produced by the cells can use an additional receptor for cell entry. These packaging cells will also be useful to further explore the complicated pattern of receptor usage conferred by the 10A1 viral surface protein.  相似文献   

17.
18.
Cholesterol, a major component of plasma membrane lipid rafts, is important for assembly and budding of enveloped viruses, including influenza and HIV-1. Cholesterol depletion impairs virus assembly and infectivity. This study examined the effects of exogenous cholesterol addition (delivered as a complex with methyl-beta-cyclodextrin (MbCD)) on the production of Molony murine leukemia virus (MoMuLV) retroviral vector and HIV-1-based lentiviral vector pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Cholesterol supplementation before and during vector production enhanced the infectivity of retroviral and lentiviral vectors up to 4-fold and 6-fold, respectively. In contrast, the amount of retroviral vector produced was unchanged, and that of lentiviral vector was increased less than 2-fold. Both free cholesterol and cholesterol ester content in 293-gag-pol producer cells increased with cholesterol addition. In contrast, the phospholipids headgroup composition was essentially unchanged by cholesterol supplementation in 293-gag-pol packaging cells. Based on these results, it is proposed that cholesterol supplementation increases the infectivity of VSV-G-pseudotyped retroviral and lentiviral vectors, possibly by altering the composition of the producer cell membrane where the viral vectors are assembled and bud, and/or by changing the lipid composition of the viral vectors.  相似文献   

19.
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.  相似文献   

20.
Lentivirus vectors based on human immunodeficiency virus (HIV) type 1 (HIV-1) constitute a recent development in the field of gene therapy. A key property of HIV-1-derived vectors is their ability to infect nondividing cells. Although high-titer HIV-1-derived vectors have been produced, concerns regarding safety still exist. Safety concerns arise mainly from the possibility of recombination between transfer and packaging vectors, which may give rise to replication-competent viruses with pathogenic potential. We describe a novel lentivirus vector which is based on HIV, simian immunodeficiency virus (SIV), and vesicular stomatitis virus (VSV) and which we refer to as HIV/SIVpack/G. In this system, an HIV-1-derived genome is encapsidated by SIVmac core particles. These core particles are pseudotyped with VSV glycoprotein G. Because the nucleotide homology between HIV-1 and SIVmac is low, the likelihood of recombination between vector elements should be reduced. In addition, the packaging construct (SIVpack) for this lentivirus system was derived from SIVmac1A11, a nonvirulent SIV strain. Thus, the potential for pathogenicity with this vector system is minimal. The transduction ability of HIV/SIVpack/G was demonstrated with immortalized human lymphocytes, human primary macrophages, human bone marrow-derived CD34(+) cells, and primary mouse neurons. To our knowledge, these experiments constitute the first demonstration that the HIV-1-derived genome can be packaged by an SIVmac capsid. We demonstrate that the lentivirus vector described here recapitulates the biological properties of HIV-1-derived vectors, although with increased potential for safety in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号