首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cholesterol, a major component of plasma membrane lipid rafts, is important for assembly and budding of enveloped viruses, including influenza and HIV-1. Cholesterol depletion impairs virus assembly and infectivity. This study examined the effects of exogenous cholesterol addition (delivered as a complex with methyl-beta-cyclodextrin (MbCD)) on the production of Molony murine leukemia virus (MoMuLV) retroviral vector and HIV-1-based lentiviral vector pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Cholesterol supplementation before and during vector production enhanced the infectivity of retroviral and lentiviral vectors up to 4-fold and 6-fold, respectively. In contrast, the amount of retroviral vector produced was unchanged, and that of lentiviral vector was increased less than 2-fold. Both free cholesterol and cholesterol ester content in 293-gag-pol producer cells increased with cholesterol addition. In contrast, the phospholipids headgroup composition was essentially unchanged by cholesterol supplementation in 293-gag-pol packaging cells. Based on these results, it is proposed that cholesterol supplementation increases the infectivity of VSV-G-pseudotyped retroviral and lentiviral vectors, possibly by altering the composition of the producer cell membrane where the viral vectors are assembled and bud, and/or by changing the lipid composition of the viral vectors.  相似文献   

2.
We have developed the recombinant baculovirus pseudotyped with vesicular stomatitis virus (VSV) G protein. The VSV-G gene was under the control of the polyhedrin promoter so that it was expressed at high levels in infected insect cells but not in mammalian cells. The presence of VSV-G protein in purified baculovirus preparations was confirmed by Western analysis. This recombinant baculovirus also carried human AFP (alpha-fetoprotein) promoter for hepatocyte-specific gene expression. After an in vitro infection by a recombinant baculovirus carrying the luciferase gene under the control of human AFP promoter/enhancer (BacG-AFP-Luc(+)), the luciferase gene was expressed in AFP-producing Huh7, Hep3B, and HepG2 cell lines, but not in AFP-nonproducing cell lines. BacG-AFP-Luc(+) transduced with human hepatoma cells in vitro at an efficiency about fivefold greater than the recombinant baculovirus lacking VSV-G (the virus Bac-AFP-Luc(+)). The utilization of the AFP promoter/enhancer in a baculovirus vector could provide benefits in gene therapy applications.  相似文献   

3.
4.
5.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

6.
A 208-amino-acid amino-terminal fragment of the 4070A amphotropic murine leukemia virus envelope glycoprotein contains all of the determinants required to recognize cell surface amphotropic receptors. This fragment was fused with a streptavidin-binding tag, expressed in Sf9 insect cells by using a baculovirus vector, and purified to homogeneity. The (125)I-labeled purified fragment (AS208) specifically bound various cell lines susceptible to amphotropic murine leukemia virus infection. The number of AS208-binding sites was in the range of 7 X 10(4) to 17 X 10(4) per cell. Quantitative analysis of binding revealed that AS208-binding sites are heterogeneous with regard to ligand binding affinity or that cooperativity exists between receptors. Competition experiments showed that the concentration of AS208 required to inhibit virus entry was lower than that required to inhibit the binding of virus particles at the cell surface. Taken together, these data suggested that amphotropic envelope-binding sites present at the cell surface do not act independently and do not participate equally in virus infection.  相似文献   

7.
A comparison of partial NH2-terminal sequences of vesicular stomatitis viral glycoprotein G (molecular weight, 69,000) and the soluble extracellular glycoprotein antigen Gs (molecular weight, 57,000) shows that both of the sequences are identical. Tryptic fingerprint analyses show that Gs lacks the carboxy-terminal region containing the membrane-anchoring hydrophobic domain of G. These results suggest that Gs is formed by cleavage in the carboxy-terminal region of G.  相似文献   

8.
9.
The glycoprotein of vesicular stomatitis (VS) virus was selectively liberated from the virion membrane by the dialyzable nonionic detergent, beta-D-octylglucoside. The isolated viral glycoprotein could be rendered virtually free of phospholipid and detergent, under which conditions it formed tail-to-tail glycoprotein micelles in the form of rosettes. When mixtures of viral glycoprotein and egg lecithin were dialyzed free of octylglucoside, glycoprotein vesicles formed spontaneously with spikes protruding in the same external orientation as the VS virion membrane. The glycoprotein vesicles exhibited increased and uniform buoyant density, indicating relative homogeneity in the proportion of glycoprotein and phosphatidylcholine in each glycoprotein liposome. Evidence for similar insertion and orientation of VS viral glycoprotein in both phosphatidylcholine vesicles and virion membrane was substantiated by the finding that proteolytic digestion with thermolysin gave rise to hydrophobic glycoprotein tail fragments in vesicle or virion membranes that migrated identically in polyacrylamide gels.  相似文献   

10.
A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their "wild-type" progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD(50)) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD(50) of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.  相似文献   

11.
D Odell  E Wanas  J Yan    H P Ghosh 《Journal of virology》1997,71(10):7996-8000
Chimeric proteins in which the transmembrane anchoring sequence (TM) or both the TM and the cytoplasmic tail (CT) of vesicular stomatitis virus glycoprotein G were replaced with corresponding domains of viral or cellular integral membrane proteins were used to examine the influence of these domains on acidic-pH-induced membrane fusion by G protein. The TM and CT of G were also replaced with the lipid anchor glycosylphosphatidylinositol. Hybrids containing foreign TM or TM and CT sequences were fusogenic at acidic pH but glycosylphosphatidylinositol-anchored G was nonfusogenic at acidic pH. The results suggest that the fusogenic activity of G protein requires membrane anchoring by a hydrophobic peptide sequence and the specific amino acid sequence of the TM has no influence on fusogenic activity.  相似文献   

12.
The amphotropic murine leukemia virus (MuLV) can infect cells from a number of mammals, including humans, via its specific receptor. Basic knowledge of amphotropic MuLV receptor expression is likely to be useful in the development and improvement of gene therapy protocols based on amphotropic-pseudotyped vectors. To investigate the expression of the human receptor for the amphotropic MuLV (GLVR-2, newly termed Pit2), we determined its mRNA levels in several cell lines and found them to vary significantly. Induction of increased levels of mRNA after removal of phosphate from the media was observed in two osteosarcoma cell lines. The increase in GLVR-2 mRNA resulted in a concomitant rise in the levels of a 71-kDa protein specifically recognized by affinity-purified antibodies against GLVR-2. Using these antibodies, we were able to confirm the intracellular topology of the large hydrophilic domain between the proposed sixth and seventh transmembrane domains of the GLVR-2 protein. This assignment is in agreement with the fourth extracellular loop being outside the cell, consistent with the proposal that the fourth extracellular loop of GLVR-2 contains the envelope binding site.  相似文献   

13.
14.
The mechanism by which viral glycoproteins are incorporated into virus envelopes during budding from host membranes is a major question of virus assembly. Evidence is presented here that the envelope glycoprotein (G protein) of vesicular stomatitis virus binds to the viral matrix protein (M protein) in vitro with the specificity, reversibility, and affinity necessary to account for virus assembly in vivo. The assay for the interaction is based on the ability of M protein to stabilize the interaction of G protein subunits, which exist as trimers of identical subunits in the virus envelope. The interaction with M protein was shown by using G proteins labeled with fluorescent probes capable of detecting subunit dissociation and reassociation in vitro. The results show that the M protein isolated from virions either as purified soluble protein or as nucleocapsid-M protein complexes interacts with the G protein in vitro and that the reaction is reversible. The interaction between the G and M proteins was not serotype specific, but no interaction between the vesicular stomatitis virus M protein and the influenza virus hemagglutinin could be detected. These results support the conclusion that the interactions described here are the ones that govern assembly of G protein into virus envelopes in vivo.  相似文献   

15.
The envelope glycoprotein (G protein) of vesicular stomatitis virus is a transmembrane protein that exists as a trimer of identical subunits in the virus envelope. We have examined the effect of modifying the environment surrounding the membrane-spanning sequence on the association of G protein subunits using resonance energy transfer. G protein subunits were labeled with either fluorescein isothiocyanate or rhodamine isothiocyanate. When the labeled G proteins were mixed in the presence of the detergent octyl glucoside, mixed trimers containing both fluorescent labels were formed as a result of subunit exchange, as shown by resonance energy transfer between the two labels. In contrast when fluorescein- and rhodamine-labeled G proteins were mixed in the presence of Triton X-100, no resonance energy transfer was observed, indicating that subunit exchange did not occur in Triton X-100 micelles. However, if labeled G proteins were first mixed in the presence of octyl glucoside, energy transfer persisted after dilution with buffer containing Triton X-100. This result indicates that the G protein subunits remained associated in Triton X-100 micelles and that the failure to undergo subunit exchange was due to lack of dissociation of G protein subunits. Chemical cross-linking experiments confirmed that G protein was trimeric in the presence of Triton X-100. The efficiency of resonance energy transfer between labeled G protein was higher when G proteins were incorporated into dimyristoylphosphatidylcholine liposomes compared to detergent micelles. This result indicates that the labels exist in a more favorable environment for energy transfer in membranes than in detergent micelles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
J V Garcia  C Jones    A D Miller 《Journal of virology》1991,65(11):6316-6319
The host range of retroviruses is determined primarily by the presence of specific receptors on target cells which are recognized by the retroviral envelope glycoprotein. Somatic cell hybrids have been used to determine the chromosomal locations of several retroviral receptors in mice prior to their molecular cloning. Here we report that by using human-Chinese hamster somatic cell hybrids and a retroviral vector, we have mapped the receptor for the amphotropic murine leukemia virus to the pericentromeric region of human chromosome 8.  相似文献   

17.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

18.
Production and expression of double-expression vectors which transduce both Neo(r) and lacZ genes and are based on the structure of avian leukosis virus were enhanced by using cis-acting sequences (long terminal repeats and noncoding sequences) from Rous-associated virus-1 and Rous-associated virus-2 rather than those of avian erythroblastosis virus previously used in our constructs. Polyclonal producer cells obtained after transfection of these vectors into the Isolde packaging cell line gave rise to titers as high as 3 x 10(5) lacZ CFU/ml, whereas it was possible to isolate clones of producer cells giving rise to titers of more than 10(6) resistance focus-forming units per ml.  相似文献   

19.
The matrix (M) protein of vesicular stomatitis virus regulates transcription.   总被引:36,自引:0,他引:36  
G M Clinton  S P Little  F S Hagen  A S Huang 《Cell》1978,15(4):1455-1462
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号